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ARTICLE INFO ABSTRACT

Keywords: The world is warming rapidly, threatening the extinction of much of the world’s biota. Thermal tolerance

Phenotypic plasticity plasticity has been touted as an important buffer against global warming. The temperature tolerance-plasticity

;he;mog’lerame trade-off hypothesis (TOH) posits that ectotherms who have adapted to high temperatures have done so at the
raae-of

expense of having limited plasticity to further improve their heat tolerance. Empirical evidence is mixed and
inconsistencies may arise due to statistical artefacts caused by spurious correlations. This lack of consensus is
problematic because an accurate evaluation of the TOH is crucial for estimating the buffering capacity of thermal
plasticity in ectotherms that already live close to their upper physiological thermal limits. In this study, we
demonstrate that the manner in which the statistical bias has been addressed when evaluating the TOH, as
measured at the intraspecific level by the change in thermal tolerance across two environments, is erroneous.
This is because there has never been a statistically robust prediction for either a trade-off or a lack of trade-off in
two-environment experiments, which is surprising given the importance of such predictions in this field. Here,
we derive a statistical framework to correctly test the hypothesis that the observed change in thermal tolerance is
consistent with TOH predictions. To demonstrate how our approach can alter the conclusions and interpretations
of the TOH, we apply it to two existing datasets. We show that the TOH may indeed be valid, despite previous
claims to the contrary, highlighting the critical importance of a sound statistical approach to avoid spurious
conclusions that can have significant implications for our understanding of climate change responses.

Spurious correlations
Randomization tests
Trend analysis

1. Introduction

It has been more than twenty years since Stillman (2003) published a
seminal paper showing that acclimation capacity in upper thermal
tolerance (CTayx) of cardiac function trades-off with basal heat tolerance
in four species of porcelain crabs from different thermal habitats. As
summarized by Parmesan et al. (2022, p. 225): “Some species have
evolved extreme upper thermal limits at the expense of plasticity,
reflecting an evolutionary trade-off between these traits. The most
heat-tolerant species, such as those from extreme environments, may
therefore be at a greater risk of warming because of an inability to
physiologically adjust to thermal change (low confidence)”. Although
Parmesan et al. (2022) focused on the interspecific level, several studies
have also tested the tolerance-plasticity trade-off hypothesis (TOH) at
the lineage or intraspecific level (reviewed in van Heerwaarden and

Kellermann, 2020; see also Gunderson, 2023). In any case, the generality
(or lack thereof) of the TOH remains unclear. This lack of clarity is a
critical problem because incorrect conclusions about the TOH could lead
to a fundamental misunderstanding of which species are most vulner-
able to climate change, particularly those already living close to their
upper physiological thermal limits.

van Heerwaarden and Kellermann (2020) argue that the problem is
not with the TOH itself, but with the way experiments and/or statistical
tests have been conducted (see also van Heerwaarden et al., 2024).
Gunderson (2023) analysed studies at the intraspecific level that sup-
ported the TOH but suggested that regression to the mean had led to a
significant overestimation of support for the TOH, and that this should
be considered in future tests of the hypothesis.

Testing the TOH can be plagued by false positives due to statistical
bias, or false negatives due to inappropriate statistical analysis and/or

* Corresponding author. Departament de Genetica i de Microbiologia, Grup de Genomica, Bioinformatica i Biologia Evolutiva (GBBE), Universitat Autonoma de

Barcelona, Spain.
E-mail address: mauro.santos@uab.es (M. Santos).

https://doi.org/10.1016/j.jtherbio.2025.104248

Received 22 January 2025; Received in revised form 26 July 2025; Accepted 15 August 2025

Available online 1 September 2025

0306-4565/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://orcid.org/0000-0002-6478-6570
https://orcid.org/0000-0002-6478-6570
https://orcid.org/0000-0001-9413-1922
https://orcid.org/0000-0001-9413-1922
mailto:mauro.santos@uab.es
www.sciencedirect.com/science/journal/03064565
https://www.elsevier.com/locate/jtherbio
https://doi.org/10.1016/j.jtherbio.2025.104248
https://doi.org/10.1016/j.jtherbio.2025.104248
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtherbio.2025.104248&domain=pdf

M. Santos and J.F. Fontanari

low statistical power as we will show here. Many studies estimate
thermal plasticity as the change in thermal tolerance ACTy,ax across two
environments (21 of 30 studies reviewed by van Heerwaarden and
Kellermann, 2020), where the upper thermal limit or critical thermal
maximum CTp,, is estimated by any appropriate method: (i) heat
tolerance measured at a reference or basal temperature (CTmyax(1)), and
(ii) heat tolerance after heat hardening, where sub-lethal exposure to
thermal stress can temporarily increase thermal tolerance (Bowler,
2005), or heat acclimation to improve thermoregulation (CTyay(2); A
CTmax = CTax2) — CTmax1)). We acknowledge that the interplay be-
tween time and temperature dosing can significantly influence conclu-
sions about thermal tolerance. However, our focus here is on studies
where experiments are designed to avoid deleterious acclimation to
suboptimal temperatures, allowing us to concentrate on the relationship
between basal tolerance and heat acclimation capacity. The Pearson
product-moment correlation or Spearman’s rank correlation coefficient
between ACTyax and CTyay1) can be used to test for the trade-off. The
problem is that the two variables, plastic response and basal or reference
heat tolerance, share the common index CTpax), resulting in a
“spurious” correlation (Pearson, 1897; Jackson and Somers, 1991;
Kronmal, 1993). Pearson (1897) defined spurious correlations as cor-
relations caused solely by data transformations that do not reflect
meaningful properties of the underlying data.

The motivation for the present work came largely from reading the
works of Deery et al. (2021) and Gunderson (2023). Deery et al. (2021)
studied heat tolerance plasticity in two lizard species: Anolis carolinensis
and Anolis sagrei. They measured basal heat tolerance CTpayi) and
subsequent heat hardening CTp.y(2) in a total of 97 lizards, but used a
subset of animals (30 A. carolinensis and 35 A. sagrei) to test for a
trade-off between heat hardening capacity and basal heat tolerance.
Heat tolerance plasticity was estimated as ACTmax = CTrax(2) — CTmax(1)
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for each species. To avoid false positives, Deery et al. (2021) used the
randomization approach suggested by Jackson and Somers (1991) to
test the null hypothesis of a nonsignificant correlation between ACTax
and basal heat tolerance CTpax1) (Fig. 4 in Deery et al., 2021). They also
reanalysed the data from Phillips et al. (2016) using the randomization
approach (Figure S1 in Deery et al., 2021). In all cases, Deery et al.
(2021) concluded that the null hypothesis that there was no relationship
between basal heat tolerance and heat hardening capacity could not be
rejected.

Our point here is that while the randomization approach used by
Deery et al. (2021) correctly generates the null correlation histograms,
there is no clear prediction of what to expect from the TOH. For
example, the null correlation histograms plotted by Deery et al. (2021)
show vertical lines indicating the one-sided 95th percentile threshold of
the permuted values, so they are testing Hy : p = p, versus Hy : p < pg; i.
e. a one-tailed test where the decision rule is that the observed empirical
correlation is lower than the null expectation. We believe that their
reasoning was based on the following (mistaken) intuition. In Fig. 1A,
we recast Jackson and Somers (1991) by showing N = 200 simulated
data for two variables X and Y derived from a bivariate normal distri-
bution with parameters 4 =[100 100] and covariance matrix ¥ =

625 0

{ 0 625
they are uncorrelated. In Fig. 1B, we plot the null correlation histogram
after 1000 random permutations of the raw data, and the blue line shows
the empirical Pearson correlation ry y = 0.01. The TOH posits that there
is a negative correlation between basal heat tolerance and heat accli-
mation/hardening capacity; however, due to the spurious correlation,
we cannot longer use Hy : p = O versus H; : p < 0 as the hypotheses to be
tested and have to derive the null correlation histogram that results after
the transformation A = Y — X. Fig. 1C shows the scatterplot after the

} ; i.e. both variables have the same mean and variance, but
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Fig. 1. (A) Scatterplot of N = 200 simulated data points for two variables X and Y with Pearson correlation ryy = 0.01. (B) Null correlation histogram obtained after
1000 random permutations of the data in A. The blue line shows the empirical correlation rxy. (C) Scatterplot of A =Y — X and X showing a strong negative
(spurious) correlation ryy_x = — 0.74. (D) Null correlation histogram obtained after 1000 random permutations of the transformed data in C. The blue line shows

the empirical correlation rxy_x.
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transformation, and Fig. 1D shows the null correlation histogram after
1000 random permutations of the transformed data. This transformation
shifted the whole null correlation histogram in Fig. 1B to the left, and the
blue line shows the empirical (spurious) correlation rxy_x = — 0.74.
Therefore, it seems intuitively reasonable to use Hy : p = p, versus H; :
p < po as the hypotheses to be tested, where the usual null correlation of
0 has been replaced by the expected null (spurious) correlation p,
resulting from the data transformation. Unfortunately, this intuition is
disastrously wrong and can lead to many false negatives (failing to reject
the null hypothesis when the TOH is true), thereby resulting in the
erroneous conclusion that thermal phenotypic plasticity can facilitate
population persistence. This is a critical error, particularly for ecto-
therms that are already living close to their upper physiological thermal
limits. The reason for this is that the TOH may still hold even if the
correlation between basal heat tolerance and heat acclimation/har-
dening capacity is significantly higher than the null expectation after
transforming the raw data, as long as the correlation is negative, i.e. in
Fig. 1D there is plenty of room between the spurious correlation of the
transformed raw data and 0.

These problems arise because, to our knowledge, no one has calcu-
lated how the expected correlation between heat acclimation/hardening
capacity and basal heat tolerance [p(ACTyax, CTmax(1))] that tests for the
TOH changes as a function of the statistical properties of the original
variables CTyax(1) @nd CTax(2)- This is an example of a wider problem in
ecology and evolutionary biology, where “data are typically collected
without any pre-study determination and justification of reasonable null
and alternative hypotheses or of decision rules and decision costs”
(Berner and Amrhein, 2022, p. 778). In what follows, we first derive the
expected values of p(ACTmax, CTmax(1)) as a function of the statistical
properties of the original variables. This section is necessarily a bit
technical, but it is important to understand all the statistical subtleties
involved after the seemingly simple transformation A= Y- X
(ACTmax = CTmax(2) — CTmax(1)). Another issue we address is statistical
power. It is unfortunately common practice not to formally calculate
statistical power at the design stage of an experiment (Ellis, 2010),
which directly impacts our ability to discern true biological effects.
Without adequate power, there is a high risk of committing a Type II
error (f = 1— power), incorrectly accepting a false null hypothesis
when a true effect exists. This leads to the fundamental problem that
many studies testing the TOH are likely underpowered, which severely
impacts the validity of their statistical conclusions and interpretations.
Finally, we vindicate Phillips et al.’s (2016) suggestion of a trade-off
between basal heat tolerance and heat hardening in the lizard L. cog-
geri, contradicting the claims of Deery et al. (2021) (see also Gunderson,
2023), and discuss the issue of regression to the mean in the context of
the randomization approach to hypothesis testing.

All numerical data reported here have been independently double-
checked. M.S. performed analyses in the MATLAB (2024) algebra
environment using tools provided by the Statistics Toolbox. For trend
analysis, we also used the nonparametric Mann-Kendall tau function
’ktaub’ (Burkey 2005) implemented in MATLAB. J.F.F performed ana-
lyses in Fortran.

2. Derivation of expected values

To simplify the notation, let X = CTpax(1), ¥ = CTmax(2), and A = A
CTmax = Y — X. From the standard expression for the variance of a dif-
ference of two random variables we have:

V(A) = V(X) + V(Y) — 2Cov(X, Y)

= V(X)+ V() - 2p(X, Y)/VX)V(Y), W

where Cov(X,Y) is the covariance and p(X,Y) is the Pearson product-
moment correlation. We also have:
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Cov(A,X)=Cov(X,Y) - V(X 5
=2p(X, )/ VX)V(Y) — V(X). 2

Therefore, it can be shown that:

NS3

Cov(X,Y) - V(X)

AX)=

AN AV -
V(Y) V(X)

v vy

This expression shows that the correlation between heat acclima-
tion/hardening capacity (A= ACTn,) and basal heat tolerance
(X = CTnax1)) that tests for the TOH [p(ACTmax, CTmax1))] is @ complex
function of the variance of the original variables [V(X)=
V(CTmax1)); V(Y) = V(CTmax(2))], their correlation [p(X,Y) = p(CTmaxa),
CTmax2))], and the variance of the heat acclimation/hardening capacity
[V(A) = V(ACTpa)]. The TOH is supported if p(A,X) <0 or
equivalently:

PXY) < |~ ©)]

This inequality reveals the main difficulty in defining the TOH, since
it is satisfied when X and Y are independent, i.e., p(X,Y) = p(CTmaxq),
CTmax2)) = 0. Thus, finding a negative p(A,X) correlation is not suffi-
cient to conclude that the TOH is valid: the correlation must be sub-
stantially different from the null correlation, i.e., the correlation when X
and Y are independent. This means that the concept of statistical hy-
pothesis testing already appears in the attempt to explicitly formalize
the TOH. In the words of Pearson (1897, p. 491): “A part of the corre-
lation he discovers between organs is undoubtedly organic, but another
part is solely due to the nature of his arithmetic, and as a measure of
organic relationship is spurious.”

The previous treatment makes it possible to analyse the behaviour of
the expected correlation p(ACTmax, CTmax(1)) as a function of the statis-
tical properties of the original variables CTpay1) and CTyay2). Fig. 2
shows this behaviour as a function of the value of the correlation be-
tween CTax(1) and CTiax(2)s A(CTmax(1), CTmax(2))> and the ratio of their
variances I' = V(CTyax(2)) /V(CTmax(1)). The arrow points to the null
expectation py = —/V(CTmax1))/[V(CTmax1)) + V(CTmax(2))] » which is
obtained by setting p(X,Y) = 0 in equation (3). Note that in Fig. 2 p(A
CTrmax; CTmax(1)) is always less than 0, so inequality (4) holds. Paren-
thetically, note also that in Fig. 1 the variables X and Y were assumed to
be uncorrelated with variances V(X) = V(Y) = 625 (and thus I = 1).
For this specific simulation, the null expected spurious correlation is
Po = —1/625/(625 + 625) = — 0.707, and our random sample yielded
rxy-x = — 0.74. This uncorrelated scenario is crucial for our framework
as it establishes a critical baseline for the statistical test. Our approach
fundamentally involves comparing observed correlations when X and Y
are uncorrelated [i.e., p(X,Y) = 0] against cases where they are corre-
lated [i.e., p(X,Y) # 0]. This comparison is essential for distinguishing
between spurious correlations and genuine biological relationships,
thereby providing a robust method for testing the TOH.

As an illustrative numerical example to show that by testing Hy : p =
po versus Hy : p < p, we will always get a false negative if the correlation
between CTpax1) and CTyay2) is positive but lower than the upper
equation  (4), ie. 0 < p(CThax(1)s CTmax(2)) <
\/ V(CTmax(1))/V(CTrax(2)) > assume N = 200 simulated data for a given
species derived from a bivariate normal distribution with parameters
u=[40.1 42.6] for CTpay1) and CTpax2) (in degrees Celsius), respec-

1 0.4243
0.4243 0.5
CThax2)) = 0.6 < 4/1/0.5, so inequality (4) is satisfied. Fig. 3A shows
the change in heat tolerance ACTp,x as a function of basal heat tolerance

bound in

tively, and covariance matrix £ = ; i.e. p(CTrax(1)s
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Fig. 2. Expected correlation of heat hardening capacity and basal heat tolerance p(ACTmax, CTmax(1)) as a function of the correlation between basal and induced heat
tolerance p(CTmax(1),CTmax(2)), and the ratio I' = V(CTmax(2)) /V(CTmax(1)). We set V(CTpax(1)) = 1 without loss of generality. The arrow points to the null expectation

£0(ACTmax; CTmax1)) = —+/V(CTmax(1))/[V(CTmax(1)) + V(CTrmax(2))] When p(CTmax(1), CTmax(2)) = O (see text for details).
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Fig. 3. (A) Change in heat tolerance (ACTp.x) as a function of basal heat tolerance. The plot is based on a random sample of N = 200 animals derived from a
bivariate normal distribution with parameters y =[40.1 42.6] for CTpax1) and CTpaye) (in degrees Celsius), respectively, and covariance matrix X =

1 0.4243
0.4243 05

. (B) Null distribution of Pearson product-moment correlation coefficients calculated after 1000 random permutations. The red lines indicate the

two-sided 95th percentile threshold of permuted values, and the blue line the empirical correlation coefficient. (C) Same data but now plotted as the ranked heat
tolerance plasticity (A (ranked) CTmax), namely, the difference CTmay(2) — CTmax(1) ranked according to CTpay1) in ascending order, against the individual number
(according to the ranked CTpax(1)). (D) Null distribution of the nonparametric Mann-Kendall 7 for trend after 1000 random permutations of the ranked change in heat
tolerance. The blue line shows the empirical 7(r = — 0.53).
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Fig. 4. Power analysis assuming N = 100 individuals. To estimate power, we obtained synthetic data from bivariate normal distributions with parameters y =
[40.1 42.6] and covariance matrices = according t0 p(CTmax(1), CTmax(2)) and I' = V(CTiax(2)) /V(CTmax(1))- In each case, we tested the TOH after 1000 random
permutations of the data and assigned a value of 1 if the null hypothesis was rejected and a 0 otherwise. This was repeated 2000 times, so that for each combination

of parameter values, the figure shows the average of 2000 independent runs.

CTmax(1), and Fig. 3B shows the distribution of Pearson correlation co-
efficients after 1000 random permutations of the data. The red lines
define the two-tailed 95 % percentile interval of the permuted values,
and the blue line shows the empirical correlation, which is clearly
outside the 95 % percentile interval. Perhaps it is easier to see that the
TOH holds in this numerical example by plotting the data as in Fig. 3C,
which shows the ranked heat tolerance plasticity (A (ranked) CTmax);
namely, the difference CTpax(2) — CTmax(1) ranked according to CTpax()
in ascending order, against the individual number (according to the
ranked CTpax(1)). The essence of the TOH is that individuals that have
evolved the greatest basal heat tolerance (those in the lower right of
Fig. 3C) will be most vulnerable to a further increase in habitat tem-
perature due to their lower acclimation capacity of CTp.x (lower
A(ranked) CTmax). If TOH holds, we expect a negative and statistically
significant trend for A ranked) CTmax, and we can use the nonparametric
Mann-Kendall statistical test for trend to assess whether A ranked) CTmax
is increasing or decreasing, and whether the trend in either direction is
statistically significant (Helsel et al. 2020). In Fig. 3D we show the null
distribution histogram of the Mann-Kendall 7 after 1000 random per-
mutations of the ranked change in heat tolerance, and the blue line
shows the empirical 7(z = — 0.53), which is clearly outside the null
distribution histogram.

To summarize, if we use (e.g.) the randomization approach suggested
by Jackson and Somers (1991) to test the null hypothesis of a nonsig-
nificant correlation between the change in heat tolerance ACTp,x as a
function of basal heat tolerance CTpax1), the following hypotheses
should be tested: Hy : p = p, versus Hj : p # p,, i.e. a two-tailed test.
This avoids obtaining false negatives when 0 < p(CTyax(1), CTmax(2)) <
v/V(CTrmax(1))/V(CTmax(z)) and Hj :p <p, as used by Deery et al.
(2021).

3. Power analysis

Ideally, a statistical power analysis should be performed when
planning a TOH experiment across two environments (Ellis, 2010, pp.

59-60). This involves calculating the probability of correctly rejecting a
false hypothesis when a particular alternative hypothesis is true. The
challenge has been that a prospective or a priori power analysis has not
been possible, simply because the statistical properties of the correlation
P(ACTax, CTmax(1)) as a function of the original variables CTyax(1) and
CTnax(2) were not fully understood. Therefore, researchers did not have a
good sense of what constitutes a sensible sample size and the associated
level of power.

Here, our aim is to illustrate how the statistical power of testing the
TOH across two environments changes as a function of p(CTmax1),
CTmax(2)) and the ratio I' = V(CTyax(2)) /V(CTmax(1)). We hope this will
also help researchers determine the necessary sample size to achieve a
specified level of statistical power when planning a study to test the TOH
across two environments. Fig. 4 presents the statistical power assuming
N = 100, a sample size considered reasonably large for this type of
experiments (e.g., Deery et al., 2021). Note that Fig. 4 skips the power
value when p(CTax(1), CTmax(2)) = 0. This is because in this case we are
not talking about power, but type I error, which here is around 5 %
(average 0.051) for all values of I, as expected from a type I error a =
0.05. For p(CTmax(1), CTmax(2)) < O power is basically the same regard-
less of I', but for p(CTmax(1), CTmax(2)) > 0 power is a complex function of
P(CTmax(1), CTmax(2)) and I'. These surprising results can be understood
by comparing Figs. 4 and 2. The bending down function p(ACTpax,
CTmax1)) When p(CTpax(1): CTmax(2)) >0 and I"< 0.5 or so in Fig. 2
makes the correlation coefficient between heat tolerance ACTyax and
basal heat tolerance CTy,x(1) Similar to the null expectation p,, which
dramatically reduces power for some values of the parameters. In these
cases, we will never get a test powerful enough to reject the null hy-
pothesis unless N is unrealistically large (several thousand).

Our analysis reveals a crucial point: while statistical power naturally
decreases as the population correlation p(CTax(1); CTmax(2)) approaches
0, we found that power can also be greatly reduced, even for relatively
large p(CTmax(1), CTmax(2)), depending significantly on the ratio of the
variances of CTyay1) and CTmax(2). This highlights a previously unap-
preciated factor that critically impacts the ability to robustly test the



M. Santos and J.F. Fontanari

TOH, often increasing the risk of false negatives (Type II errors) by
failing to reject the null hypothesis (Hy : p = p,) when it should be.

4. Empirical data

In Fig. 5, we reanalyse the data for A. carolinensis (Deery et al., 2021)
and for L. coggeri (Phillips et al., 2016) independently for the two ob-
servers (Observer 1: VL; Observer 2: AH), as in Deery et al. (2021, their
Figure S1). Fig. 5A shows the change in heat tolerance as a function of
basal heat tolerance for A. carolinensis, and Fig. 5B shows the null cor-
relation histograms after 1000 random permutations. The empirical
correlation, r = —0.65 (blue line), falls within the two-tailed 95 %
percentile interval (red lines), consistent with the conclusions of Deery
et al. (2021) that the null hypothesis of no relationship between basal
heat tolerance and heat hardening capacity cannot be rejected. How-
ever, it is important to note that the relatively small sample (N = 30)
and the weak correlation observed between CTpax(1) and CTyay2) r =

A. carolinensis

38 39 40 41 42 43
Initial heat tolerance (°C)

L. coggeri (Obs. 1)

38 39 40 41 42 43
Initial heat tolerance (°C)

L. coggeri (Obs. 2)

ACT

375 38 385 39 395 40 405
Initial heat tolerance (°C)

)

-
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0.12) in this experiment suggest that the study may have been under-
powered. While the data are consistent with a null relationship, these
factors mean we cannot definitively rule out the existence of a true
underlying relationship that the experiment lacked the power to detect.

Fig. 5C-E and 5D-5F show similar plots for L. coggeri (observer 1 and
observer 2). The empirical correlation between heat hardening plasticity
and initial heat tolerance is r = —0.77 for observer 1 and r = —0.52 for
observer 2, and in both cases these correlations are less negative than the
null expectation: the blue lines in Fig. 5D and F pointing to the empirical
correlations are well outside the two-tailed 95 % percentile interval (red
lines). Therefore, for the lizard L. coggeri, the TOH appears to hold for
both observers, contrary to the claims of Deery et al. (2021) after
reanalysis of these data. We note that the correlation between CTax(1)
and CTpax2) was always positive in L. coggeri: r(CTyax(1); CTmax(2)) =
0.70 for observer 1 and r(CTmax(1), CTmax(2)) = 0.73 for observer 2. These
examples provide an empirical illustration of false negatives by testing
Ho : p = py versus Hj : p < p,, i.e. a left-tailed test as the alternative
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Fig. 5. Re-analysis of data for Anolis carolinensis (Deery et al., 2021) and for Lampropholis coggeri (Phillips et al., 2016) based on data collected by two observers. (A,
C, E) Change in heat tolerance (ACTnyax) as a function of basal heat tolerance. (B, D, F) Null distribution of Pearson product-moment correlation coefficients
calculated after 1000 random permutations of the data in A, C, and E. The red lines indicate the two-sided 95th percentile threshold of permuted values, and the blue
lines the empirical correlation coefficients.
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hypothesis.

Note that the negative correlation between an individual’s initial
heat tolerance and the change in that value between the first and second
measurements is a classic example of a problem where regression to the
mean can be mistaken for causal factors (Kelly and Price, 2005), such as
TOH (Gunderson, 2023). In well-designed experimental studies, this
effect is removed because it affects both experimental and control
groups. This observation motivated a theoretical method to correct for
the regression effect based on resampling to generate a null hypothesis
distribution that would describe the control group (Cichon et al., 1999).
This is the method used in our analysis, and the assumption that the
initial and final values of an individual’s heat tolerance are uncorrelated
is equivalent to complete regression to the mean. Although this
assumption has been heavily criticized in the context of mass loss in
animals where it was originally applied (Ruf, 2000), we see no funda-
mental problem with the assumption that CTax(1) and CTyax(2) are un-
correlated. Although there are alternative methods to correct for
regression effects (Kelly and Price, 2005; Gunderson, 2023), the choice
of an appropriate null hypothesis seems more natural and flexible
(Cichon et al., 1999; Deery et al., 2021), as it is the theoretical analogue
of control groups in experimental studies.

In summary, our application of the proposed statistical framework to
existing empirical datasets yielded contrasting results: for A. carolinensis,
while we found no significant evidence to reject the null hypothesis of no
relationship, this finding should be interpreted cautiously given the
likely underpowered nature of that study (due to small sample size and
weak observed correlation). In contrast, for L. coggeri, the data strongly
supported the rejection of the null hypothesis, indicating a clear trade-
off.

5. Conclusions

Because of the inherent link between plasticity and basal thermal
tolerance, the approach of Deery et al. (2021) appears to be gaining
momentum for testing the TOH (Gunderson and Revell, 2022). They
estimated thermal plasticity as the change in thermal tolerance as a
function of basal heat tolerance and used the randomization method
proposed by Jackson and Somers (1991) to evaluate hypotheses
confounded by spurious correlations. However, we show here that that
their one-sided alternative hypothesis H; : p < p, is incorrect, leading to
spurious conclusions, specifically an increased risk of false negatives
(Type II errors) where a trade-off exists. For instance, their approach
would have incorrectly failed to reject the null hypothesis for L. coggeri,
despite our robust analysis revealing a clear trade-off for this species.
This can result in the erroneous belief that thermal phenotypic plasticity
provides a greater buffer against warming than it actually does, partic-
ularly for species already near their upper thermal limits. We also sug-
gest an alternative trend analysis, which is more visually appealing, to
appreciate the subtleties between the predictions of the TOH and the
effect of regression to the mean.

Finally, our attempt to formalize the TOH revealed that the mere
finding of a negative p(ACTnax, CTmax(1)) correlation is not sufficient to
support this hypothesis, since this negative correlation is obtained when
the basal and plastically induced heat tolerances are independent
random variables. Thus, we suggest that the null hypothesis must be part
of the definition of the TOH, highlighting that its rigorous testing is
uniquely susceptible to statistical artefacts and therefore fundamentally
requires a robust statistical framework.

In summary, our study provides a robust statistical framework, uti-
lizing a well-chosen two-tailed randomization test, that offers a solution
to both the pervasive statistical bias and regression-to-the-mean issues in
testing the tolerance-plasticity trade-off hypothesis (TOH). By correctly
comparing observed results against a relevant null hypothesis, our
approach allows for a far more accurate assessment of the TOH. This
directly changes our interpretation of existing empirical findings. As
demonstrated with L. coggeri, what was previously considered a lack of
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trade-off may, in fact, be a significant one when rigorously tested. This is
profoundly important for climate change responses: correctly evaluating
the TOH is crucial for accurately estimating the buffering capacity of
thermal plasticity in ectotherms. Without a sound statistical basis, we
risk generating misleading conclusions that could lead to overoptimistic
predictions about species’ resilience, potentially misguiding conserva-
tion strategies and underestimating the true threat of warming for spe-
cies already living close to their upper physiological thermal limits. Our
work provides the necessary methodological rigor to ensure that our
understanding of thermal tolerance and plasticity is built on solid
ground, enabling more precise predictions of how biological systems
will respond to a rapidly changing climate.
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