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A B S T R A C T

The world is warming rapidly, threatening the extinction of much of the world’s biota. Thermal tolerance 
plasticity has been touted as an important buffer against global warming. The temperature tolerance-plasticity 
trade-off hypothesis (TOH) posits that ectotherms who have adapted to high temperatures have done so at the 
expense of having limited plasticity to further improve their heat tolerance. Empirical evidence is mixed and 
inconsistencies may arise due to statistical artefacts caused by spurious correlations. This lack of consensus is 
problematic because an accurate evaluation of the TOH is crucial for estimating the buffering capacity of thermal 
plasticity in ectotherms that already live close to their upper physiological thermal limits. In this study, we 
demonstrate that the manner in which the statistical bias has been addressed when evaluating the TOH, as 
measured at the intraspecific level by the change in thermal tolerance across two environments, is erroneous. 
This is because there has never been a statistically robust prediction for either a trade-off or a lack of trade-off in 
two-environment experiments, which is surprising given the importance of such predictions in this field. Here, 
we derive a statistical framework to correctly test the hypothesis that the observed change in thermal tolerance is 
consistent with TOH predictions. To demonstrate how our approach can alter the conclusions and interpretations 
of the TOH, we apply it to two existing datasets. We show that the TOH may indeed be valid, despite previous 
claims to the contrary, highlighting the critical importance of a sound statistical approach to avoid spurious 
conclusions that can have significant implications for our understanding of climate change responses.

1. Introduction

It has been more than twenty years since Stillman (2003) published a 
seminal paper showing that acclimation capacity in upper thermal 
tolerance (CTmax) of cardiac function trades-off with basal heat tolerance 
in four species of porcelain crabs from different thermal habitats. As 
summarized by Parmesan et al. (2022, p. 225): “Some species have 
evolved extreme upper thermal limits at the expense of plasticity, 
reflecting an evolutionary trade-off between these traits. The most 
heat-tolerant species, such as those from extreme environments, may 
therefore be at a greater risk of warming because of an inability to 
physiologically adjust to thermal change (low confidence)”. Although 
Parmesan et al. (2022) focused on the interspecific level, several studies 
have also tested the tolerance-plasticity trade-off hypothesis (TOH) at 
the lineage or intraspecific level (reviewed in van Heerwaarden and 

Kellermann, 2020; see also Gunderson, 2023). In any case, the generality 
(or lack thereof) of the TOH remains unclear. This lack of clarity is a 
critical problem because incorrect conclusions about the TOH could lead 
to a fundamental misunderstanding of which species are most vulner
able to climate change, particularly those already living close to their 
upper physiological thermal limits.

van Heerwaarden and Kellermann (2020) argue that the problem is 
not with the TOH itself, but with the way experiments and/or statistical 
tests have been conducted (see also van Heerwaarden et al., 2024). 
Gunderson (2023) analysed studies at the intraspecific level that sup
ported the TOH but suggested that regression to the mean had led to a 
significant overestimation of support for the TOH, and that this should 
be considered in future tests of the hypothesis.

Testing the TOH can be plagued by false positives due to statistical 
bias, or false negatives due to inappropriate statistical analysis and/or 
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low statistical power as we will show here. Many studies estimate 
thermal plasticity as the change in thermal tolerance ΔCTmax across two 
environments (21 of 30 studies reviewed by van Heerwaarden and 
Kellermann, 2020), where the upper thermal limit or critical thermal 
maximum CTmax is estimated by any appropriate method: (i) heat 
tolerance measured at a reference or basal temperature (CTmax(1)), and 
(ii) heat tolerance after heat hardening, where sub-lethal exposure to 
thermal stress can temporarily increase thermal tolerance (Bowler, 
2005), or heat acclimation to improve thermoregulation (CTmax(2); Δ 
CTmax = CTmax(2) − CTmax(1)). We acknowledge that the interplay be
tween time and temperature dosing can significantly influence conclu
sions about thermal tolerance. However, our focus here is on studies 
where experiments are designed to avoid deleterious acclimation to 
suboptimal temperatures, allowing us to concentrate on the relationship 
between basal tolerance and heat acclimation capacity. The Pearson 
product-moment correlation or Spearman’s rank correlation coefficient 
between ΔCTmax and CTmax(1) can be used to test for the trade-off. The 
problem is that the two variables, plastic response and basal or reference 
heat tolerance, share the common index CTmax(1), resulting in a 
“spurious” correlation (Pearson, 1897; Jackson and Somers, 1991; 
Kronmal, 1993). Pearson (1897) defined spurious correlations as cor
relations caused solely by data transformations that do not reflect 
meaningful properties of the underlying data.

The motivation for the present work came largely from reading the 
works of Deery et al. (2021) and Gunderson (2023). Deery et al. (2021)
studied heat tolerance plasticity in two lizard species: Anolis carolinensis 
and Anolis sagrei. They measured basal heat tolerance CTmax(1) and 
subsequent heat hardening CTmax(2) in a total of 97 lizards, but used a 
subset of animals (30 A. carolinensis and 35 A. sagrei) to test for a 
trade-off between heat hardening capacity and basal heat tolerance. 
Heat tolerance plasticity was estimated as ΔCTmax = CTmax(2) − CTmax(1)

for each species. To avoid false positives, Deery et al. (2021) used the 
randomization approach suggested by Jackson and Somers (1991) to 
test the null hypothesis of a nonsignificant correlation between ΔCTmax 
and basal heat tolerance CTmax(1) (Fig. 4 in Deery et al., 2021). They also 
reanalysed the data from Phillips et al. (2016) using the randomization 
approach (Figure S1 in Deery et al., 2021). In all cases, Deery et al. 
(2021) concluded that the null hypothesis that there was no relationship 
between basal heat tolerance and heat hardening capacity could not be 
rejected.

Our point here is that while the randomization approach used by 
Deery et al. (2021) correctly generates the null correlation histograms, 
there is no clear prediction of what to expect from the TOH. For 
example, the null correlation histograms plotted by Deery et al. (2021)
show vertical lines indicating the one-sided 95th percentile threshold of 
the permuted values, so they are testing H0 : ρ = ρ0 versus H1 : ρ < ρ0; i. 
e. a one-tailed test where the decision rule is that the observed empirical 
correlation is lower than the null expectation. We believe that their 
reasoning was based on the following (mistaken) intuition. In Fig. 1A, 
we recast Jackson and Somers (1991) by showing N = 200 simulated 
data for two variables X and Y derived from a bivariate normal distri
bution with parameters μ = [100 100 ] and covariance matrix Σ =
[

625 0
0 625

]

; i.e. both variables have the same mean and variance, but 

they are uncorrelated. In Fig. 1B, we plot the null correlation histogram 
after 1000 random permutations of the raw data, and the blue line shows 
the empirical Pearson correlation rX,Y = 0.01. The TOH posits that there 
is a negative correlation between basal heat tolerance and heat accli
mation/hardening capacity; however, due to the spurious correlation, 
we cannot longer use H0 : ρ = 0 versus H1 : ρ < 0 as the hypotheses to be 
tested and have to derive the null correlation histogram that results after 
the transformation Δ = Y − X. Fig. 1C shows the scatterplot after the 

Fig. 1. (A) Scatterplot of N = 200 simulated data points for two variables X and Y with Pearson correlation rX,Y = 0.01. (B) Null correlation histogram obtained after 
1000 random permutations of the data in A. The blue line shows the empirical correlation rX,Y . (C) Scatterplot of Δ = Y − X and X showing a strong negative 
(spurious) correlation rX,Y − X = − 0.74. (D) Null correlation histogram obtained after 1000 random permutations of the transformed data in C. The blue line shows 
the empirical correlation rX,Y − X .
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transformation, and Fig. 1D shows the null correlation histogram after 
1000 random permutations of the transformed data. This transformation 
shifted the whole null correlation histogram in Fig. 1B to the left, and the 
blue line shows the empirical (spurious) correlation rX,Y− X = − 0.74. 
Therefore, it seems intuitively reasonable to use H0 : ρ = ρ0 versus H1 :

ρ < ρ0 as the hypotheses to be tested, where the usual null correlation of 
0 has been replaced by the expected null (spurious) correlation ρ0 
resulting from the data transformation. Unfortunately, this intuition is 
disastrously wrong and can lead to many false negatives (failing to reject 
the null hypothesis when the TOH is true), thereby resulting in the 
erroneous conclusion that thermal phenotypic plasticity can facilitate 
population persistence. This is a critical error, particularly for ecto
therms that are already living close to their upper physiological thermal 
limits. The reason for this is that the TOH may still hold even if the 
correlation between basal heat tolerance and heat acclimation/har
dening capacity is significantly higher than the null expectation after 
transforming the raw data, as long as the correlation is negative, i.e. in 
Fig. 1D there is plenty of room between the spurious correlation of the 
transformed raw data and 0.

These problems arise because, to our knowledge, no one has calcu
lated how the expected correlation between heat acclimation/hardening 
capacity and basal heat tolerance [ρ(ΔCTmax,CTmax(1))] that tests for the 
TOH changes as a function of the statistical properties of the original 
variables CTmax(1) and CTmax(2). This is an example of a wider problem in 
ecology and evolutionary biology, where “data are typically collected 
without any pre-study determination and justification of reasonable null 
and alternative hypotheses or of decision rules and decision costs” 
(Berner and Amrhein, 2022, p. 778). In what follows, we first derive the 
expected values of ρ(ΔCTmax,CTmax(1)) as a function of the statistical 
properties of the original variables. This section is necessarily a bit 
technical, but it is important to understand all the statistical subtleties 
involved after the seemingly simple transformation Δ = Y− X 
(ΔCTmax = CTmax(2) − CTmax(1)). Another issue we address is statistical 
power. It is unfortunately common practice not to formally calculate 
statistical power at the design stage of an experiment (Ellis, 2010), 
which directly impacts our ability to discern true biological effects. 
Without adequate power, there is a high risk of committing a Type II 
error (β = 1 − power), incorrectly accepting a false null hypothesis 
when a true effect exists. This leads to the fundamental problem that 
many studies testing the TOH are likely underpowered, which severely 
impacts the validity of their statistical conclusions and interpretations. 
Finally, we vindicate Phillips et al.’s (2016) suggestion of a trade-off 
between basal heat tolerance and heat hardening in the lizard L. cog
geri, contradicting the claims of Deery et al. (2021) (see also Gunderson, 
2023), and discuss the issue of regression to the mean in the context of 
the randomization approach to hypothesis testing.

All numerical data reported here have been independently double- 
checked. M.S. performed analyses in the MATLAB (2024) algebra 
environment using tools provided by the Statistics Toolbox. For trend 
analysis, we also used the nonparametric Mann-Kendall tau function 
’ktaub’ (Burkey 2005) implemented in MATLAB. J.F.F performed ana
lyses in Fortran.

2. Derivation of expected values

To simplify the notation, let X = CTmax(1), Y = CTmax(2), and Δ = Δ 
CTmax = Y − X. From the standard expression for the variance of a dif
ference of two random variables we have: 

V(Δ)=V(X)+V(Y) − 2Cov(X,Y)
= V(X)+V(Y) − 2ρ(X,Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(X)V(Y)

√
,

(1) 

where Cov(X,Y) is the covariance and ρ(X,Y) is the Pearson product- 
moment correlation. We also have: 

Cov(Δ,X)=Cov(X,Y) − V(X)
= 2ρ(X,Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(X)V(Y)

√
− V(X).

(2) 

Therefore, it can be shown that: 

ρ(Δ,X)=
Cov(X,Y) − V(X)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(Δ)V(Y)

√

=

̅̅̅̅̅̅̅̅̅̅̅̅
V(Y)
V(Δ)

√

ρ(X,Y) −

̅̅̅̅̅̅̅̅̅̅̅̅
V(X)
V(Δ)

√

.

(3) 

This expression shows that the correlation between heat acclima
tion/hardening capacity (Δ= ΔCTmax) and basal heat tolerance 
(X= CTmax(1)) that tests for the TOH [ρ(ΔCTmax,CTmax(1))] is a complex 
function of the variance of the original variables [V(X) =
V(CTmax(1)); V(Y) = V(CTmax(2))], their correlation [ρ(X,Y) = ρ(CTmax(1),

CTmax(2))], and the variance of the heat acclimation/hardening capacity 
[V(Δ) = V(ΔCTmax)]. The TOH is supported if ρ(Δ,X) < 0 or 
equivalently: 

ρ(X,Y) <

̅̅̅̅̅̅̅̅̅̅̅
V(X)
V(Y)

√

. (4) 

This inequality reveals the main difficulty in defining the TOH, since 
it is satisfied when X and Y are independent, i.e., ρ(X,Y) = ρ(CTmax(1),

CTmax(2)) = 0. Thus, finding a negative ρ(Δ,X) correlation is not suffi
cient to conclude that the TOH is valid: the correlation must be sub
stantially different from the null correlation, i.e., the correlation when X 
and Y are independent. This means that the concept of statistical hy
pothesis testing already appears in the attempt to explicitly formalize 
the TOH. In the words of Pearson (1897, p. 491): “A part of the corre
lation he discovers between organs is undoubtedly organic, but another 
part is solely due to the nature of his arithmetic, and as a measure of 
organic relationship is spurious.”

The previous treatment makes it possible to analyse the behaviour of 
the expected correlation ρ(ΔCTmax,CTmax(1)) as a function of the statis
tical properties of the original variables CTmax(1) and CTmax(2). Fig. 2
shows this behaviour as a function of the value of the correlation be
tween CTmax(1) and CTmax(2), ρ(CTmax(1),CTmax(2)), and the ratio of their 
variances Γ = V(CTmax(2)) /V(CTmax(1)). The arrow points to the null 
expectation ρ0 = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(CTmax(1))/[V(CTmax(1)) + V(CTmax(2))]

√
, which is 

obtained by setting ρ(X,Y) = 0 in equation (3). Note that in Fig. 2 ρ(Δ 
CTmax,CTmax(1)) is always less than 0, so inequality (4) holds. Paren
thetically, note also that in Fig. 1 the variables X and Y were assumed to 
be uncorrelated with variances V(X) = V(Y) = 625 (and thus Γ = 1). 
For this specific simulation, the null expected spurious correlation is 
ρ0 = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
625/(625 + 625)

√
= − 0.707, and our random sample yielded 

rX,Y− X = − 0.74. This uncorrelated scenario is crucial for our framework 
as it establishes a critical baseline for the statistical test. Our approach 
fundamentally involves comparing observed correlations when X and Y 
are uncorrelated [i.e., ρ(X,Y) = 0] against cases where they are corre
lated [i.e., ρ(X,Y) ∕= 0]. This comparison is essential for distinguishing 
between spurious correlations and genuine biological relationships, 
thereby providing a robust method for testing the TOH.

As an illustrative numerical example to show that by testing H0 : ρ =

ρ0 versus H1 : ρ < ρ0 we will always get a false negative if the correlation 
between CTmax(1) and CTmax(2) is positive but lower than the upper 
bound in equation (4), i.e. 0 < ρ(CTmax(1),CTmax(2)) <
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(CTmax(1))/V(CTmax(2))

√
, assume N = 200 simulated data for a given 

species derived from a bivariate normal distribution with parameters 
μ = [ 40.1 42.6 ] for CTmax(1) and CTmax(2) (in degrees Celsius), respec

tively, and covariance matrix Σ =

[
1 0.4243

0.4243 0.5

]

; i.e. ρ(CTmax(1),

CTmax(2)) = 0.6 <
̅̅̅̅̅̅̅̅̅̅̅̅
1/0.5

√
, so inequality (4) is satisfied. Fig. 3A shows 

the change in heat tolerance ΔCTmax as a function of basal heat tolerance 
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Fig. 2. Expected correlation of heat hardening capacity and basal heat tolerance ρ(ΔCTmax,CTmax(1)) as a function of the correlation between basal and induced heat 
tolerance ρ(CTmax(1),CTmax(2)), and the ratio Γ = V(CTmax(2)) /V(CTmax(1)). We set V(CTmax(1)) = 1 without loss of generality. The arrow points to the null expectation 
ρ0(ΔCTmax,CTmax(1)) = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(CTmax(1))/[V(CTmax(1)) + V(CTmax(2))]

√
when ρ(CTmax(1),CTmax(2)) = 0 (see text for details).

Fig. 3. (A) Change in heat tolerance (ΔCTmax) as a function of basal heat tolerance. The plot is based on a random sample of N = 200 animals derived from a 
bivariate normal distribution with parameters μ = [40.1 42.6 ] for CTmax(1) and CTmax(2) (in degrees Celsius), respectively, and covariance matrix Σ =
[

1 0.4243
0.4243 0.5

]

. (B) Null distribution of Pearson product-moment correlation coefficients calculated after 1000 random permutations. The red lines indicate the 

two-sided 95th percentile threshold of permuted values, and the blue line the empirical correlation coefficient. (C) Same data but now plotted as the ranked heat 
tolerance plasticity (Δ(ranked) CTmax), namely, the difference CTmax(2) − CTmax(1) ranked according to CTmax(1) in ascending order, against the individual number 
(according to the ranked CTmax(1)). (D) Null distribution of the nonparametric Mann-Kendall τ for trend after 1000 random permutations of the ranked change in heat 
tolerance. The blue line shows the empirical τ(τ = − 0.53).
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CTmax(1), and Fig. 3B shows the distribution of Pearson correlation co
efficients after 1000 random permutations of the data. The red lines 
define the two-tailed 95 % percentile interval of the permuted values, 
and the blue line shows the empirical correlation, which is clearly 
outside the 95 % percentile interval. Perhaps it is easier to see that the 
TOH holds in this numerical example by plotting the data as in Fig. 3C, 
which shows the ranked heat tolerance plasticity (Δ(ranked) CTmax), 
namely, the difference CTmax(2) − CTmax(1) ranked according to CTmax(1)

in ascending order, against the individual number (according to the 
ranked CTmax(1)). The essence of the TOH is that individuals that have 
evolved the greatest basal heat tolerance (those in the lower right of 
Fig. 3C) will be most vulnerable to a further increase in habitat tem
perature due to their lower acclimation capacity of CTmax (lower 
Δ(ranked) CTmax). If TOH holds, we expect a negative and statistically 
significant trend for Δ(ranked) CTmax, and we can use the nonparametric 
Mann-Kendall statistical test for trend to assess whether Δ(ranked) CTmax 

is increasing or decreasing, and whether the trend in either direction is 
statistically significant (Helsel et al. 2020). In Fig. 3D we show the null 
distribution histogram of the Mann-Kendall τ after 1000 random per
mutations of the ranked change in heat tolerance, and the blue line 
shows the empirical τ(τ = − 0.53), which is clearly outside the null 
distribution histogram.

To summarize, if we use (e.g.) the randomization approach suggested 
by Jackson and Somers (1991) to test the null hypothesis of a nonsig
nificant correlation between the change in heat tolerance ΔCTmax as a 
function of basal heat tolerance CTmax(1), the following hypotheses 
should be tested: H0 : ρ = ρ0 versus H1 : ρ ∕= ρ0, i.e. a two-tailed test. 
This avoids obtaining false negatives when 0 < ρ(CTmax(1),CTmax(2)) <

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
V(CTmax(1))/V(CTmax(2))

√
and H1 : ρ < ρ0 as used by Deery et al. 

(2021).

3. Power analysis

Ideally, a statistical power analysis should be performed when 
planning a TOH experiment across two environments (Ellis, 2010, pp. 

59–60). This involves calculating the probability of correctly rejecting a 
false hypothesis when a particular alternative hypothesis is true. The 
challenge has been that a prospective or a priori power analysis has not 
been possible, simply because the statistical properties of the correlation 
ρ(ΔCTmax,CTmax(1)) as a function of the original variables CTmax(1) and 
CTmax(2) were not fully understood. Therefore, researchers did not have a 
good sense of what constitutes a sensible sample size and the associated 
level of power.

Here, our aim is to illustrate how the statistical power of testing the 
TOH across two environments changes as a function of ρ(CTmax(1),

CTmax(2)) and the ratio Γ = V(CTmax(2)) /V(CTmax(1)). We hope this will 
also help researchers determine the necessary sample size to achieve a 
specified level of statistical power when planning a study to test the TOH 
across two environments. Fig. 4 presents the statistical power assuming 
N = 100, a sample size considered reasonably large for this type of 
experiments (e.g., Deery et al., 2021). Note that Fig. 4 skips the power 
value when ρ(CTmax(1),CTmax(2)) = 0. This is because in this case we are 
not talking about power, but type I error, which here is around 5 % 
(average 0.051) for all values of Γ, as expected from a type I error α =

0.05. For ρ(CTmax(1),CTmax(2)) < 0 power is basically the same regard
less of Γ, but for ρ(CTmax(1),CTmax(2)) > 0 power is a complex function of 
ρ(CTmax(1),CTmax(2)) and Γ. These surprising results can be understood 
by comparing Figs. 4 and 2. The bending down function ρ(ΔCTmax,

CTmax(1)) when ρ(CTmax(1),CTmax(2)) > 0 and Γ ≤ 0.5 or so in Fig. 2
makes the correlation coefficient between heat tolerance ΔCTmax and 
basal heat tolerance CTmax(1) similar to the null expectation ρ0, which 
dramatically reduces power for some values of the parameters. In these 
cases, we will never get a test powerful enough to reject the null hy
pothesis unless N is unrealistically large (several thousand).

Our analysis reveals a crucial point: while statistical power naturally 
decreases as the population correlation ρ(CTmax(1),CTmax(2)) approaches 
0, we found that power can also be greatly reduced, even for relatively 
large ρ(CTmax(1), CTmax(2)), depending significantly on the ratio of the 
variances of CTmax(1) and CTmax(2). This highlights a previously unap
preciated factor that critically impacts the ability to robustly test the 

Fig. 4. Power analysis assuming N = 100 individuals. To estimate power, we obtained synthetic data from bivariate normal distributions with parameters μ =

[ 40.1 42.6 ] and covariance matrices Σ according to ρ(CTmax(1),CTmax(2)) and Γ = V(CTmax(2)) /V(CTmax(1)). In each case, we tested the TOH after 1000 random 
permutations of the data and assigned a value of 1 if the null hypothesis was rejected and a 0 otherwise. This was repeated 2000 times, so that for each combination 
of parameter values, the figure shows the average of 2000 independent runs.
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TOH, often increasing the risk of false negatives (Type II errors) by 
failing to reject the null hypothesis (H0 : ρ = ρ0) when it should be.

4. Empirical data

In Fig. 5, we reanalyse the data for A. carolinensis (Deery et al., 2021) 
and for L. coggeri (Phillips et al., 2016) independently for the two ob
servers (Observer 1: VL; Observer 2: AH), as in Deery et al. (2021, their 
Figure S1). Fig. 5A shows the change in heat tolerance as a function of 
basal heat tolerance for A. carolinensis, and Fig. 5B shows the null cor
relation histograms after 1000 random permutations. The empirical 
correlation, r = − 0.65 (blue line), falls within the two-tailed 95 % 
percentile interval (red lines), consistent with the conclusions of Deery 
et al. (2021) that the null hypothesis of no relationship between basal 
heat tolerance and heat hardening capacity cannot be rejected. How
ever, it is important to note that the relatively small sample (N = 30) 
and the weak correlation observed between CTmax(1) and CTmax(2) (r =

0.12) in this experiment suggest that the study may have been under
powered. While the data are consistent with a null relationship, these 
factors mean we cannot definitively rule out the existence of a true 
underlying relationship that the experiment lacked the power to detect.

Fig. 5C–E and 5D-5F show similar plots for L. coggeri (observer 1 and 
observer 2). The empirical correlation between heat hardening plasticity 
and initial heat tolerance is r = − 0.77 for observer 1 and r = − 0.52 for 
observer 2, and in both cases these correlations are less negative than the 
null expectation: the blue lines in Fig. 5D and F pointing to the empirical 
correlations are well outside the two-tailed 95 % percentile interval (red 
lines). Therefore, for the lizard L. coggeri, the TOH appears to hold for 
both observers, contrary to the claims of Deery et al. (2021) after 
reanalysis of these data. We note that the correlation between CTmax(1)

and CTmax(2) was always positive in L. coggeri: r(CTmax(1),CTmax(2)) =

0.70 for observer 1 and r(CTmax(1),CTmax(2)) = 0.73 for observer 2. These 
examples provide an empirical illustration of false negatives by testing 
H0 : ρ = ρ0 versus H1 : ρ < ρ0, i.e. a left-tailed test as the alternative 

Fig. 5. Re-analysis of data for Anolis carolinensis (Deery et al., 2021) and for Lampropholis coggeri (Phillips et al., 2016) based on data collected by two observers. (A, 
C, E) Change in heat tolerance (ΔCTmax) as a function of basal heat tolerance. (B, D, F) Null distribution of Pearson product-moment correlation coefficients 
calculated after 1000 random permutations of the data in A, C, and E. The red lines indicate the two-sided 95th percentile threshold of permuted values, and the blue 
lines the empirical correlation coefficients.
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hypothesis.
Note that the negative correlation between an individual’s initial 

heat tolerance and the change in that value between the first and second 
measurements is a classic example of a problem where regression to the 
mean can be mistaken for causal factors (Kelly and Price, 2005), such as 
TOH (Gunderson, 2023). In well-designed experimental studies, this 
effect is removed because it affects both experimental and control 
groups. This observation motivated a theoretical method to correct for 
the regression effect based on resampling to generate a null hypothesis 
distribution that would describe the control group (Cichoń et al., 1999). 
This is the method used in our analysis, and the assumption that the 
initial and final values of an individual’s heat tolerance are uncorrelated 
is equivalent to complete regression to the mean. Although this 
assumption has been heavily criticized in the context of mass loss in 
animals where it was originally applied (Ruf, 2000), we see no funda
mental problem with the assumption that CTmax(1) and CTmax(2) are un
correlated. Although there are alternative methods to correct for 
regression effects (Kelly and Price, 2005; Gunderson, 2023), the choice 
of an appropriate null hypothesis seems more natural and flexible 
(Cichoń et al., 1999; Deery et al., 2021), as it is the theoretical analogue 
of control groups in experimental studies.

In summary, our application of the proposed statistical framework to 
existing empirical datasets yielded contrasting results: for A. carolinensis, 
while we found no significant evidence to reject the null hypothesis of no 
relationship, this finding should be interpreted cautiously given the 
likely underpowered nature of that study (due to small sample size and 
weak observed correlation). In contrast, for L. coggeri, the data strongly 
supported the rejection of the null hypothesis, indicating a clear trade- 
off.

5. Conclusions

Because of the inherent link between plasticity and basal thermal 
tolerance, the approach of Deery et al. (2021) appears to be gaining 
momentum for testing the TOH (Gunderson and Revell, 2022). They 
estimated thermal plasticity as the change in thermal tolerance as a 
function of basal heat tolerance and used the randomization method 
proposed by Jackson and Somers (1991) to evaluate hypotheses 
confounded by spurious correlations. However, we show here that that 
their one-sided alternative hypothesis H1 : ρ < ρ0 is incorrect, leading to 
spurious conclusions, specifically an increased risk of false negatives 
(Type II errors) where a trade-off exists. For instance, their approach 
would have incorrectly failed to reject the null hypothesis for L. coggeri, 
despite our robust analysis revealing a clear trade-off for this species. 
This can result in the erroneous belief that thermal phenotypic plasticity 
provides a greater buffer against warming than it actually does, partic
ularly for species already near their upper thermal limits. We also sug
gest an alternative trend analysis, which is more visually appealing, to 
appreciate the subtleties between the predictions of the TOH and the 
effect of regression to the mean.

Finally, our attempt to formalize the TOH revealed that the mere 
finding of a negative ρ(ΔCTmax,CTmax(1)) correlation is not sufficient to 
support this hypothesis, since this negative correlation is obtained when 
the basal and plastically induced heat tolerances are independent 
random variables. Thus, we suggest that the null hypothesis must be part 
of the definition of the TOH, highlighting that its rigorous testing is 
uniquely susceptible to statistical artefacts and therefore fundamentally 
requires a robust statistical framework.

In summary, our study provides a robust statistical framework, uti
lizing a well-chosen two-tailed randomization test, that offers a solution 
to both the pervasive statistical bias and regression-to-the-mean issues in 
testing the tolerance-plasticity trade-off hypothesis (TOH). By correctly 
comparing observed results against a relevant null hypothesis, our 
approach allows for a far more accurate assessment of the TOH. This 
directly changes our interpretation of existing empirical findings. As 
demonstrated with L. coggeri, what was previously considered a lack of 

trade-off may, in fact, be a significant one when rigorously tested. This is 
profoundly important for climate change responses: correctly evaluating 
the TOH is crucial for accurately estimating the buffering capacity of 
thermal plasticity in ectotherms. Without a sound statistical basis, we 
risk generating misleading conclusions that could lead to overoptimistic 
predictions about species’ resilience, potentially misguiding conserva
tion strategies and underestimating the true threat of warming for spe
cies already living close to their upper physiological thermal limits. Our 
work provides the necessary methodological rigor to ensure that our 
understanding of thermal tolerance and plasticity is built on solid 
ground, enabling more precise predictions of how biological systems 
will respond to a rapidly changing climate.
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