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Abstract

Fungal infections related to biofilm formation on medical devices, such as en-
dotracheal tubes (ETTs), pose significant health risks, especially during intu-
bation procedures where fungi like Candida spp. can migrate into the lower
respiratory tract. This study explores the use of Photodynamic Therapy (PDT)
to prevent fungal cell migration from ETT surfaces to lungs, focusing on the role
of curcumin as a photosensitizer. ETTs were coated with varying concentrations
of curcumin, and biofilm formation was measured after applying PDT with a
50J/cm? irradiation dose. The study found that ETTs functionalized with a one-
third concentration of CUR reduced biofilm formation by 1.78 Log, significantly
lowering microbial load and potentially decreasing hospital-acquired infections.
Confocal fluorescence microscopy confirmed that PDT damaged the biofilm's ex-
tracellular matrix and caused detachment of dead fungal cells. Moreover, the flu-
orescence analysis reveals the photodegradation behavior of the photosensitizer
within the tube, providing critical insights into its stability and durability, which
are essential for evaluating the long-term applicability of these tubes in clinical
settings. These results suggest PDT as a promising strategy to reduce fungal in-
fections in high-risk patients, offering potential for future clinical application in
preventing device-associated infections.
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INTRODUCTION biofilms on medical devices such as intravenous cathe-
ters and ETTs, represents a significant challenge in con-
The invasion of the bloodstream and vital organs by fun-  temporary medicine." These fungal biofilms, primarily

gal pathogens, along with their ability to form resilient formed by species like Candida and Aspergillus, are a
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major source of severe medical complications, including
systemic infections that can escalate to life-threatening
conditions.*™

The rapid proliferation of fungi upon entry into the
bloodstream highlights the urgent need for effective in-
terventions.” The complexities associated with endotra-
cheal intubation further increase these risks, leading to
conditions such as fungemia, fungal pneumonia, and
acute respiratory failure, particularly in post-surgical
settings.®’ Patients with prolonged intubation and com-
promised immunity are especially vulnerable to oral
fungal colonization, which further elevates the risk of
severe health complications.® The migration of fungi
from ETTs to the lower airways, facilitated by mechani-
cal ventilation or the aspiration of secretions, is a critical
pathway for respiratory infections.>® Moreover, the per-
sistent presence of ETTs can compromise the integrity
of the tracheal mucosa, inadvertently creating pathways
for fungal infiltration beyond the upper respiratory tract,
with Candida albicans frequently implicated in the onset
of ventilator-associated pneumonia (VAP). Given this
backdrop, there is a pressing need for robust preventive
measures in endotracheal intubation practices, including
stringent hygiene and sterilization protocols to mitigate
the risks of device-associated infections.'® Early detection
and vigilant monitoring for signs of fungal invasion are
essential for enabling timely and appropriate therapeutic
interventions.

In this context, PDT emerges as a promising therapeu-
tic approach, utilizing the specificity of photosensitizers
to absorb light at wavelengths, thereby targeting and neu-
tralizing pathogenic cells, including fungi.'' This study
explores the application of PDT in conjunction with CUR-
functionalized ETTs, aiming to prevent the formation of
C. albicans biofilms and, consequently, reduce the inci-
dence of VAP.

This investigation builds upon prior research,'?
which has shown that the incorporation of materials
such as copper, zinc, essential oils, and antimicrobial
polymers into medical devices (e.g., ETTs, catheters, or
implant surfaces) enhances their effectiveness against
microorganism proliferation through techniques such
as coating, impregnation, and deposition.13 In the realm
of material functionalization, coating14 or chemically
bonding photosensitizers'> onto materials can yield de-
vices that are highly effective against microorganisms
when exposed to appropriate light sources, potentially
preventing biofilm formation and mitigating device-
associated infections.'®

This study hypothesizes that the application of PDT
to CUR-functionalized ETTs will effectively prevent the

formation of C. albicans biofilms, thereby reducing the
risk of VAP.

This article is organized as follows: the materials and
methods section detail the functionalization of ETTs
and the application of PDT. The results section dis-
cusses the efficacy of this approach in preventing bio-
films and reducing the incidence of VAP, followed by an
analysis of the clinical implications and future research
directions.

Therefore, this study aims to address a critical gap
in the literature, demonstrating not only the efficacy of
PDT against C. albicans adherence and proliferation on
polyvinyl chloride (PVC) tubes but also highlighting the
potential clinical application of this approach in a hos-
pital setting, considering the durability and response of
the material to light. The integration of PDT with CUR-
functionalized ETTs represents an innovative strategy in
the ongoing battle against fungal biofilms and their asso-
ciated healthcare challenges, marking significant prog-
ress toward improving patient safety and outcomes in
the context of hospital-acquired infections. The findings
extend beyond the efficacy of PDT, suggesting a potential
paradigm shift in preventing device-associated fungal in-
fections and contributing to broader infection prevention
strategies in clinical settings.

MATERIALS AND METHODS
Functionalization process

The functionalization process initially described and es-
tablished by Zangirolami et al. (2020), involved immers-
ing a PVC based ETT in a solution containing CUR and
cesium carbonate (Cs,COj3) in dimethyl sulfoxide (DMSO)
for 4h at 30°C under continuous agitation. Following the
immersion, the tube was thoroughly washed in DMSO for
40min and subsequently in absolute ethanol for another
40min, both under constant agitation. Table 1 outlines
the concentrations of each sample, and the corresponding
rates of reagents used throughout the functionalization
process.

TABLE 1 Reagentconcentrations in the functionalization
process for each sample employed in 250 mL of DMSO.

Curcumin (mg/ Cesium carbonate

Sample mL) (mg/mL)
TCO01 6.25 1.70
TC02 4.17 1.13
TCO03 2.5 0.68
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Initially, the CUR concentration within the tube was
relatively high; therefore, two additional samples with
lower CUR concentrations were selected to serve as
benchmarks for evaluating efficiency. The amount of CUR
used was also based on the previous work by Zangirolami
et al.'” to maintain the proportionality and ensure compa-
rability of the results.

Microorganisms and biofilm formation

Candida albicans strains (ATCC 90028), donated by the
Oswaldo Cruz Foundation (FIOCRUZ), were used for
biofilm generation. Initially, the strains were cultured on
Sabouraud Dextrose Agar (SDA) (Neogem) in Petri dishes
for 48 h at 37°C. Ten colonies were then collected and sus-
pended in 10 mL of Brain Heart Infusion Broth (BHI), in-
cubated for 18 h in an orbital shaker at 37°C and 75 rpm.
The strains were subsequently washed and subjected to
the same conditions for an additional 7h. The cells were
then centrifuged for 10 min at 1500 rpm and washed twice
with phosphate-buffered saline (PBS), following the meth-
odology adapted from Romano (2017)."

The initial cell concentration for biofilm growth was
adjusted to an optical density of 0.38 at 530nm, corre-
sponding to approximately 10° cells/mL, with the cells
suspended in BHI at a 9:1 ratio (mL). For biofilm develop-
ment, a 1 cm sample of the tube (Figure 2B) was incubated
with 1.5mL of the cell and BHI suspension in a 24-well
plate for 48 h.

The quantification of the biofilm was performed
using the Colony Forming Unit (CFU) count method.
After biofilm formation, the ETT sample was vortexed
for 1min in 10mL of PBS. Subsequently, 100 pL of the
suspension was serially diluted and plated on SDA for
48h to count CFUs. Each plating was performed in
triplicate.

Statistical analyses were conducted employing the
Mann-Whitney U test for non-parametric data with a 95%

Light source

Diffused!
light

[ |

Endotracheal u
ube;

Optical fibe

FIGURE 1 Experimental setup of light source and optical fiber
illuminating a section of PVC tube alongside corresponding real-
time image captured with the functionalized tube.

confidence interval, given the small sample size (“»n”) and
the non-normal distribution of variance. Outliers were as-
sessed using the g-Dixon test for each group individually
with a 95% confidence interval.

Light source

The light source was developed by the Technological
Support Laboratory (LAT) of the Institute of Physics at the
University of Sdo Paulo (USP) in Sdo Carlos. This setup
includes a laser system (Figure 1) with an irradiance of
140mW/cm? and a peak emission wavelength of 455nm
(blue light), delivered through an optical fiber. The light
was directed inside the ETT using a cylindrical diffuser
positioned at the distal 2cm of the optical fiber.

Confocal microscopy

Biofilms were observed using an inverted Zeiss® LSM 780
confocal microscope equipped with a 405 nm Diode laser
and an 800nm laser, employing single and two-photon
excitation methods, respectively. The cells were stained
with a live/dead dye mixture of ethidium bromide and
acridine orange (50%/50%). Biofilm preparation fol-
lowed the protocol detailed in section ‘Microorganisms
and biofilm formation’, using smaller, flat segments
of ETT with a 48-h incubation period. Three distinct
sample groups were evaluated: a control group without
CUR and no light exposure; a CUR dark group, which
was functionalized but not exposed to light; and a PDT
group, which was functionalized and irradiated with
50J/cm?.

Absorbance

Ultraviolet-visible (UV-vis) spectra were recorded in the
range of 300-800nm using a Varian Cary 50 Bio UV-Vis
spectrophotometer. Samples were immersed in dimethul
sulfoxide (DMSO) for 24h to facilitate the extraction of
compounds into an aqueous solution, thereby reducing
the high opacity of the solid material and enabling accu-
rate spectroscopic analysis.

Fluorescence

Surface fluorescence spectra were recorded using a
Cary Eclipse Fluorescence Spectrometer in emission
scan mode, with excitation set at 435nm and emission
recorded between 300 and 600 nm. For three-dimensional
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FIGURE 2 (A) Evaluation of photodynamic action of the Candida albicans biofilm in three concentrations of curcumin and doses of 50,
100 and 150J/cm? (n =6, error bar =SD, Log,, scale). (B) ETT used with varying concentrations of curcumin.
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FIGURE 3 Colony Formation Unity of the TC02 sample in some ranges of light doses. *=1.78 Logs, **=1.02 Logs and ***=1.14 Logs of
CFU/mL reduction, control and light control group has no curcumin in it is composition, light control group was taken with a dose of 50J/

cm? of light, graph in Log scale (n=6, error bar=SD).

fluorescence analysis, excitation ranged from 300 to
500nm, and emission from 300 to 600 nm. Measurements
were obtained directly from the polymer surface using a
fiber optic probe.

RESULTS
Microbiological results

A key limiting factor affecting the efficiency of PDT
is the internalization of the photosensitizer into
microorganisms.'® This challenge arises due to the
relatively short lifetime of certain ROS, particularly
singlet oxygen,'® which are central to the PDT process.
In this study, cur is not available for internalization
into fungal cells, which complicates the process further,
especially in the context of biofilms, where cells are
embedded in an extracellular matrix*® that provides
enhanced resistance, including the capacity for drug

sequestration.”’ Consequently, a lower reduction in
contamination and the need for higher radiation doses
are anticipated. Therefore, the primary aim is to prevent
biofilm formation rather than decontamination.

Initially, the effect of PDT was evaluated on ETTs con-
taminated with Candida albicans at three different cur
concentrations used during the functionalization pro-
cess, in addition to a control group without cur. Figure 2
illustrates the quantification of contamination using the
colony-forming unit (CFU) count technique following the
application of PDT across all groups, with light doses of
50, 100, and 150J/cm?. The results indicate that the TC02
concentration was the most effective against C. albicans
under these conditions, demonstrated a significant CFU/
mL reduction (1.78 log reduction, p <0.05) with a 98.3%
mortality rate.

During the functionalization process, the ETT loses its
transparency due to the presence of CUR not only on the
surface but also internally (Figure 2B). As a photosensi-
tizer, CUR absorbs most of the incident light at 445nm,
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FIGURE 4 (A)Growth curve of Candida albicans in the TC02 sample of ETT with curcumin. (B) Comparison between control, a single
dose of 50J/cm? and a protocol involving six applications of a 50J/cm? dose (n=6, error bar=SD and log scale).

resulting in a differential distribution of light between the
internal and external surfaces of the ETT. VAP is primar-
ily caused by bronchial aspiration of the internal biofilm;
however, the biofilm on the external surface also contrib-
utes to the overall infection risk.

A deficiency of CUR on the ETT surface may result in
fewer bioavailable molecules for light interaction on the
internal surface, allowing lighter to penetrate the external
surface, but potentially leading to reduced PDT efficiency.
Conversely, high concentrations of CUR impede light
permeation through the material, diminishing PDT effi-
cacy on the external surface and thus affecting the overall
effectiveness of the technique. The CFU/mL reduction
observed at the TC02 CUR concentration represents an
equilibrium between these competing factors.

Subsequently, as shown in Figure 3 for the TC02 sam-
ple, lower doses of light ranging from 15 to 60J/cm* were
tested to optimize the radiation dose. The results indicated
no significant changes in CFU/mL reduction compared
to the 50J/cm? group, suggesting that lower doses do not
substantially affect PDT efficacy. Notably, the dark group
exhibited a non-statistically significant reduction in CFU/
mL (p>0.05), indicating no difference between the con-
trol, light control, and dark groups in each case. Only the
groups subjected to the full PDT process demonstrated a
significant reduction in CFU/mL.

Reduced levels of light exposure led to lower reduc-
tions in CFU/mL, with reductions of 92.1% (1.02 logs) for
15J/cm? and 92.5% (1.14 logs) for 45J/cm?”. These findings
are consistent with those reported by Zangirolami et al.
(2020)," who used a light dose of 50J/cm? on both inter-
nal and external surfaces of ETTs across various bacterial
cultures. Additionally, our results align with previous
findings regarding the percentage of bacterial reduction:
72% for E. coli, 95% for S. aureus, and 73% for P. aerugi-
nosa. In this study, a similar reduction in fungal cells of
98.3% (1.78 logs) was observed with 50J/cm?* using inter-
nal illumination exclusively.

Shi et al. (2016)** reported that C. albicans biofilms
were inhibited by 74.45% when PDT was applied using
5-aminolevulinic acid (ALA) at a dose of 300J/cm?* with
a 5-h incubation time, highlighting the challenge of in-
hibiting biofilms. The findings by Garcia et al. (2020)*
on the impact of biofilm growth surfaces on PDT efficacy
against C. albicans are particularly noteworthy. Their re-
search also suggests that applying PDT twice daily during
biofilm formation may be more effective than a single ap-
plication, especially when dealing with fully established
biofilms. This emphasizes the need to consider biofilm de-
velopment stages when designing treatment strategies for
combating C. albicans infections.

Based on these findings, we acknowledge that fully de-
veloped biofilms pose greater challenges for elimination.
Figure 4 illustrates the growth curve of C. albicans on
the ETT surface, providing insights into the peak growth
phase of the biofilm during the 48-h period. According to
Chandra et al. (2001),” individual colonies begin adher-
ing to the polymeric matrix surface within 4h, indicating
the onset of biofilm formation, although no visible extra-
cellular matrix is present at this stage.** To proactively in-
hibit this process, we propose the application of PDT prior
to biofilm maturation, specifically at the 4-h mark during
the initial phase of biofilm formation.

The data presented in Figure 4 highlights the efficacy
of the PDT protocol in preventing biofilm formation, es-
pecially when compared to the single-dose application.
The PDT protocol group exhibits a marked difference in
biofilm development, showing no visible formation of the
biofilm matrix and a significant reduction in CFU/mL
(1.65 log reduction compared to the control). This out-
come suggests effective inhibition of biofilm formation
when the PDT protocol is employed.

In contrast, the single-dose application demonstrates
only a modest reduction in biofilm formation compared to
the control group. This slight reduction may be attributed
to the influence of PDT, albeit to a lesser degree than
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FIGURE 5 Confocal microscopy of the 48 h biofilm formation. (A) Control group PVC based without curcumin 800 nm excitation

of double photon method and 40x amplification. (B) Curcumin tube control (TC02 sample) 405nm excitation and 40x amplification.

(C) Curcumin tube (TC02 sample) with 50J/cm? of unique dose PDT application, 800 nm excitation of two-photon method, and 40x

amplification.

observed with the repeated application protocol. These
findings imply that a single application of PDT may not
be as effective in fully preventing biofilm formation as the
repeated application protocol, underscoring the impor-
tance of multiple PDT applications for optimal biofilm
inhibition.

Based on the confocal microscopy analysis presented
in Figure 5A, the biofilm formation observed within the
CUR-deprived control group suggests the presence of pre-
dominantly healthy and viable fungal cells in substantial
quantities. The image vividly illustrates the complex ar-
rangement of biofilm along the polymeric surface plane of
the tube, highlighting the extent and robustness of fungal
colonization in the absence of CUR functionalization on
the ETT.

Figure 5B depicts the sample treated with CUR under
conditions without light exposure. This image confirms
the presence of biofilm on the tube's surface but shows a
reduced population of fungal cells compared to the con-
trol group. Additionally, there is a notably lower presence
of red staining, indicating a reduced occurrence of dead
cells, and a clustering of fungal cells. The green back-
ground of the image is due to the fluorescence emitted by
CUR on the polymeric surface.

The PDT group exhibited distinct behavior, where the
biofilm detached from the ETT surface following PDT
application. Confocal microscopy analysis indicated the
absence of both cells and biofilm remnants on the ETT sur-
face. However, as shown in Figure 5C, cells suspended in
the dye aqueous solution of the PDT group were observed,
demonstrating the efficacy of PDT in inducing cell death
and detachment from the tube surface. This suggests that
the extracellular matrix of the biofilm was significantly af-
fected, leading to cell death and the disintegration of the

biofilm. Importantly, the observed cells were confirmed to
be dead.

Overall, the results consistently indicate that CUR pre-
vents biofilm formation and, when activated by blue light,
PDT effectively removes and kills the biofilm on the ETT
surface.

Photobleaching

The usability of the ETT is closely tied to the lifespan of the
functionalized photosensitizer on both the internal and
external surfaces of the tube. In particular, the interaction
between light and CUR on the internal wall is critical.
Therefore, the behavior of bioavailable CUR is the most
significant physicochemical characteristic of the function-
alized ETT. Figure 6 illustrates the photobleaching of CUR
in the TCO02 sample when exposed to high doses (2000J/
cm?) of 455 nm laser light, equivalent to at least 12 days of
light exposure under the proposed protocol (50J/cm?* per
application, administered three times daily).

Figure 6A demonstrates that CUR on the internal
surface degrades more rapidly compared to the external
surface, primarily due to the challenges light faces in pen-
etrating the polymeric medium. The degradation of CUR
reduces by half between 700 and 900J/cm?. CUR is antici-
pated to remain photodynamically active up to 1800J/cm?.
Once internal degradation occurs, light penetrates more
effectively, delivering a higher dose of radiation to the ex-
ternal surface, which subsequently begins to degrade sim-
ilarly to the internal surface, albeit with a delayed onset.
The initial increase in the fluorescence spectrum can be
attributed to the clearer background created by internal
photobleaching, which enhances the reflection of the
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FIGURE 7 3D fluorescence profiles of (A) polyvinyl chloride (PVC)-based endotracheal tube (ETT) control, (B) curcumin-
functionalized PVC ETT, and (C) irradiated curcumin-functionalized ETT.

fluorescence signal to the detector. The absorbance results
presented in Figure 6B are consistent with these findings,
showing the absence of CUR after irradiation, as indicated
by the lack of the characteristic CUR peak at 430 nm.

In contrast, the fluorescence profile of the PVC-based
ETT shown in Figure 7 remains unchanged after illumina-
tion. The same initial compounds present in the PVC ETT
are detected both before and after irradiation, indicating
that the PVC structure itself is unaffected by light exposure.
However, the fluorescence signal from CUR decreases sig-
nificantly, underscoring its susceptibility to photodegrada-
tion. This reduction in CUR fluorescence suggests that the
photosensitizer undergoes degradation under prolonged
light exposure, while the underlying PVC matrix remains
stable. These results highlight the importance of under-
standing the photostability of CUR in functionalized ETTs,
especially for applications requiring extended light expo-
sure, such as antimicrobial photodynamic therapy.

DISCUSSION

The formation of Candida albicans biofilm on medical
devices used in hospitals involves a complex dynamic

process with multiple stages, including adherence to
surfaces and colonization of devices such as catheters,
probes, and endotracheal tubes. This study has highlighted
the importance of adopting a comprehensive strategy for
combating both the formation and disruption of microbial
biofilms, with a specific focus on preventing infectious
diseases resulting from the formation of these complex
microbial structures.

According to the findings, antimicrobial PDT must
be applied during the biofilm formation process, with a
particularly effective outcome achieved through a 4-h
exposure to light within a 24-h interval. Confocal images
indicate that the initial adhesion of C. albicans cells to
the surface of medical devices seems blocked only after
functionalization with CUR and the new structure of the
endotracheal tube. Katherine Lagree (2018) suggests that
surface topography may directly influence biofilm forma-
tion for various reasons.”> We hypothesize that the pres-
ence of CUR, even without light application, inhibited
biofilm formation by disrupting microorganism-surface
interactions and avoiding attachment, as seen in the dark
groups in Figures 2A and 3A. A significant variation was
observed in biofilm formation in response to different
CUR concentrations during the ETT functionalization
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process. According to Figure 2, the TC02 sample achieved
the most significant Log,;, reduction of 1.78 logs, which
means 98.3% of biofilm cell reduction.

Namrata Raman (2014)* used multi-layer polymers
loaded with antifungal agents to reduce biofilm in cathe-
ters, achieving an 83% decrease in biofilm on tubes coated
with p-peptide-loaded materials. Although the approach
differs, the results align with this study, which achieved a
1.78 log reduction. The importance of this reduction lies
not only in the direct reduction of microbial load but also
in the potential associated clinical impact. The presence of
C. albicans biofilms in ETT can significantly increase the
risk of serious lung infections, prolonged hospital stays,
increased need for antimicrobial treatments, and, in some
cases, increased morbidity and mortality.”” Furthermore,
infections associated with biofilms are more difficult
to treat due to the physical barrier that biofilms provide
against the penetration of antimicrobials and the pres-
ence of microorganisms in a physiological state that often
makes them less susceptible to these treatments.?

CUR inhibited the production of adhesins, thus reduc-
ing microorganisms’ capability to adhere and form bio-
films.* Typically, microcolonies would develop, and C.
albicans biofilms would grow similarly to the cells in the
control groups. However, this was not observed in the test
groups, primarily due to the functionalization with the
photosensitizer, as shown in the dark group in Figure 3.
Additionally, CUR is known to influence the expression
of genes associated with microbial adhesion, thereby al-
tering microorganism behavior. C. albicans biofilms dis-
play a complex three-dimensional structure, with yeasts
embedded within the extracellular matrix.>° Furthermore,
CUR has been shown to disrupt the extracellular matrix
surrounding biofilms, weakening their structure and ren-
dering them more susceptible to removal.

The strategy of applying the PDT protocol at 4-h in-
tervals during the day, as a way of delaying biofilm
maturation, represented an effective approach to con-
trolling biofilms, especially on medical devices such as
endotracheal tubes. Figure 4B, which illustrates the non-
formation of biofilm on the surface of the ETT, demon-
strates that repeated application of PDT can effectively
prevent colony aggregation and subsequent biofilm mat-
uration. PDT involves the use of a photosensitizer that, in
the presence of light of a specific wavelength, produces
reactive oxygen species (ROS).*! These ROS are capable of
directly damaging microbial cells, leading to their death or
inhibiting their growth. Applying this method at regular
intervals before the biofilm reaches maturation may inter-
fere with the ability of microbial cells to adhere to each
other and the device surface, preventing the formation
of three-dimensional structures characteristic of mature
biofilms. Choosing the timing for applying PDT is crucial.

The intervention between the 6th and 8th hour of growth,
as demonstrated, suggests a time when microbial cells are
actively trying to establish themselves and form the initial
biofilm structure. At this stage, cells have not yet devel-
oped the protective extracellular matrix that characterizes
mature biofilms, making them more susceptible to the
action of ROS generated by PDT. This underlines the im-
portance of early and periodically spaced intervention to
maximize the effectiveness of PDT in preventing biofilm
formation. Biofilm formation on medical devices such as
ETTs is a significant cause of hospital-acquired infections.
These infections are particularly challenging to treat due
to the resistance of biofilms to conventional antimicrobi-
als. The demonstration that PDT can prevent biofilm for-
mation indicates significant potential to improve patient
safety by reducing the risk of device-associated infections.
This also suggests a promising alternative to conventional
infection control methods, which often involve the use of
antimicrobials and may contribute to the development of
antimicrobial resistance.

The approach used in this study to inhibit biofilm
formation through PDT highlights specific challenges
associated with treatment efficacy in complex biofilm en-
vironments. The presence of a dense extracellular matrix
in biofilms is a significant obstacle to the penetration of
photosensitizers and, consequently, to the effectiveness of
PDT. This matrix, composed of polysaccharides, proteins,
and extracellular DNA, not only protects microbial cells
from antimicrobial agents but also limits the diffusion of
photosensitizers into the biofilm, reducing accessibility to
target cells. Furthermore, the strategy of linking the pho-
tosensitizer to a polymer, although innovative for increas-
ing stability and specific localization of the treatment, may
inadvertently decrease the availability of free photosensi-
tizer in the medium. This is critical as the effectiveness of
PDT depends on the direct interaction between the photo-
sensitizer and microbial cells to generate reactive oxygen
species (ROS). ROS are highly reactive and have a short
lifetime, which means that their action is only effective
in the immediate vicinity of their generation. Therefore,
binding of the photosensitizer to the polymer may limit its
ability to diffuse within the biofilm and reduce the expo-
sure of microbial cells to ROS, resulting in lower log CFU
reduction rates than expected.

The proposed 4-h protocol, applied before extracellu-
lar matrix formation, aims to prevent biofilm formation,
recognizing that the effectiveness of PDT is maximized at
early stages before the matrix becomes established. This
preventive approach is critical considering the complex-
ity of treating mature biofilms. Further research should
concentrate on enhancing the durability of CUR or in-
vestigating the CUR byproducts generated to guarantee
the sustained effectiveness of modified ETTs in medical
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environments. Additionally, future studies should explore
improving the photostability of CUR in modified ETTs,
optimizing CUR concentrations, and evaluating alterna-
tive photosensitizers or combination therapies to maxi-
mize PDT efficacy.

This study also highlights the predominance of bacteria
in the etiology of VAP, while recognizing the contribution
of fungi in this context. By focusing on fungi, the research
expands our understanding of the role of these microor-
ganisms in biofilms associated with medical devices and
their interactions with PDT-based treatments. The confo-
cal microscopy images in Figure 5 show evidence of bio-
film prevention. In the absence of light, biofilm exhibited
normal growth on the ETT surface, whereas, in its pres-
ence, the external biofilm matrix was compromised, lead-
ing to the detachment of dead cells from the polymeric
surface. Such damage is consistent with both structural
and metabolic effects of ROS, preventing biofilm main-
tenance and inducing cell death. ROS, due to their high
reactivity and short lifespan, attack nearby cellular com-
ponents, including membranes, proteins, and nucleic
acids. Confocal microscopy images demonstrate that, in
the presence of light, the extracellular matrix of the bio-
film is compromised. This structural damage is indicative
of the action of ROS, which can degrade components of
the extracellular matrix, such as polysaccharides and ex-
tracellular DNA, which are essential for the stability and
integrity of the biofilm. Matrix degradation facilitates the
detachment of dead cells from the polymeric surface, a
phenomenon observed in the images. This cell detach-
ment can be attributed to loss of adhesion mediated by ma-
trix destruction and ROS-induced cell death. The damage
caused by PDT is not limited to the physical destruction
of the extracellular matrix; it also has significant effects
on the metabolic function of cells within the biofilm. ROS
can inhibit critical metabolic processes, damage essential
cellular components, and eventually induce cell death.
This dual mechanism of action—structural damage to the
biofilm and impairment of cell viability—is crucial to the
effectiveness of PDT in preventing the maintenance and
maturation of biofilms. The visual evidence provided by
confocal microscopy underscores the potential of PDT as
an effective strategy to prevent biofilm formation on med-
ical devices such as ETTs. Compromising the extracellular
matrix and inducing cell death offers a dual approach to
preventing the adhesion and accumulation of microorgan-
isms, thus addressing one of the main challenges in con-
trolling infections associated with medical devices. This
study has provided valuable insights into the influence and
the critical role of CUR concentration on biofilm forma-
tion and photobleaching.*® Higher concentrations not only
obstructed light penetration but also compromised the ef-
ficacy of the technique. Moreover, the spatial interaction

among molecules influences ROS production and their
effects on cells* and is instrumental in regulating cellular
redox balance and cellular responses to oxidative stress.*
The application of the PDT protocol prevented biofilm for-
mation; since it interrupts cell propagation during the ini-
tial adhesion phase, hence, biofilm formation, it can find
future applications in clinical settings.

CONCLUSION

The findings of this study demonstrate the effectiveness of
a novel approach for preventing Candida albicans biofilm
formation on endotracheal tubes, which is a critical issue
in managing VAP. By combining CUR-functionalized ETTs
with antimicrobial PDT, this research offers a dual-modality
strategy that not only hinders the initial adherence of C. al-
bicans to the surfaces of ETTs but also effectively eradicates
the fungal cells once attached. This approach addresses a
key factor in VAP development and has the potential to
significantly reduce the risk of fungal infections associated
with mechanical ventilation, enhancing patient safety and
clinical outcomes in settings where ETTs are commonly
used. While the results are promising, further studies are
needed to validate the protocol's effectiveness in clinical
environments and to assess its durability under prolonged
use. Investigating the combined use of PDT with other anti-
fungal agents and expanding this strategy to other medical
devices prone to biofilm formation could also be benefi-
cial. Overall, this study supports the integration of CUR-
functionalized ETTs with PDT as a potent strategy against
C. albicans biofilms. By preventing biofilm-associated infec-
tions, this approach represents a meaningful advancement
in improving infection control practices and reducing the
incidence of VAP in healthcare settings.
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