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ABSTRACT: Recent advances in donor and acceptor molecules have significantly 0 ' ' ' i
enhanced the efficiency and competitiveness of organic solar cells. However, optimizing %

the interfaces remains a critical issue in increasing the photovoltaic performance, mainly 5 -5 .
to reduce charge accumulation between the hole transport layers (HTLs) and the active g

layer. In this work, the interface between PM6:Y6 (active layer) and PEDOT:PSS (HTL) 2 101 1
has been modified with silver nanoparticles (AgNPs). These AgNPs have been £ —

synthesized in anhydrous chlorobenzene by laser ablation synthesis in solution 2 1 s 1
(LASiS). The choice of chlorobenzene as the medium for the synthesis of NPs by 5 204 erease n PCE i
LASiS allows direct deposition onto the HTL. Measurements performed using steady- é ~

state current—voltage (J—V), Photo-CELIV, and current/voltage transient (TPC/TPV) 25 — AgNPs-SC|
revealed enhanced and reproducible photovoltaic parameters. The AgNPs also improve 00 02 04 06 08
the device stability and can also be used on top of other HTLs, such as Br-2PACz. Voltage (V)

Theoretical analyses were performed by fitting an analytical model to the experimental

data of photocurrent, which showed that the AgNP layer reduced bimolecular recombination losses. These findings suggest that the
AgNP-modified interface of the PEDOT:PSS/active layer is a promising and versatile strategy to optimize interfacial properties, thus
minimizing recombination losses and enhancing the efficiency, reproducibility, and stability of organic solar cells.

B INTRODUCTION been employed to enhance transparency, conductivity, and
outdoor stability in organic photovoltaics."

Thus, improving the hole-transporting layer (HTL) is
critical to achieving better energy alignment and efficient
charge extraction. Poly(3,4-ethylenedioxythiophene)-poly-
(styrenesulfonate) (PEDOT:PSS) remains the most widely
used polymeric HTL in BHJ-OSCs, demonstrating its
versatility across various organic electronic devices."*™'® To
address the energy barriers present at the PEDOT:PSS layer
interface, different approaches involving metallic nanoparticles
have been applied, utilizing methods such as suspension
processing,19 ion implantation,20 and aerosol techniques.21 A
clear illustration of this was presented by Brenes-Badilla et al.,
who demonstrated that PEDOT:PSS degraded upon exposure
to air, causing a reduction in its HOMO energy level.
However, the latter was restored after gold nanoparticles that
were implanted into the PEDOT:PSS film, near the HTL/AL
interface.”” Additionally, studies have reported improvements

The emergence of novel electron donor and acceptor
molecules for bulk heterojunction organic solar cells (BHJ-
OSCs), particularly nonfullerene Y6-type acceptors, has
significantly advanced the field by pushing power conversion
efficiencies (PCE) toward 20%, making these devices
increasingly competitive.' > A key breakthrough came with
the efficient pairing of the PM6 donor with the Y6 acceptor,
leading to substantial improvements in BHJ-OSC perform-
ance.” Furthermore, incorporating aliphatic amine-function-
alized perylene-diimide (PDINN) as an electron injection layer
successfully down-shifted the work function of the cathodes,
thereby enhancing the interfacial contact with the active layer
(AL).°

Despite these advances, issues persist due to the multilayer
structure of BHJ-OSCs, particularly those related to interfacial
energy misalignment, which restrict optimal device perform-
ance.””” Additionally, the open-circuit voltage (Voc) is
constrained by the disparity between quasi-Fermi energy levels
of holes,'® which is often influenced by the alignment of energy
levels at the anode interface. In an effort to address these
challenges, numerous interface modifications have been
explored to alter the performance and characteristics of BHJ-
OSCs. Noteworthy among these efforts are hybrid graphene

thin films'"'* and oxide/metal nanoparticles,"”'* which have
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Figure 1. (a) Device geometry and (b) energy level diagram for devices with the structure ITO/PEDOT:PSS/AgNPs/PM6:Y6/PDINN/Ag.

in the PCE of organic solar cells due to the plasmonic effects
generated bZ metal nanoparticles embedded within PE-
DOT:PSS.**** For example, Ganeshan et al** demonstrated
that incorporating size-controlled silver nanoparticles (AgNPs)
into the PEDOT:PSS layer can significantly enhance the power
conversion efficiency (PCE) of fullerene-based OSCs from
7.90 to 9.45%. This was attributed to the plasmonic scattering
effects of AgNPs, which increased the light absorption and
charge collection at the HTL/AL interface.

In this study, the PEDOT:PSS/active layer interface has
been modified with AgNPs. This procedure increased the PCE
measured from ITO/PEDOT:PSS/PM6:Y6/PDINN/Ag de-
vices. These AgNPs have been synthesized by the laser ablation
synthesis in solution (LASiS) technique, where bulk metals are
ablated by a laser beam in an aqueous or organic medium.'>*®
This top-down LASiS route eliminates the precursor
chemistry, ligand exchange, and high-temperature reduction
steps that are inherent to wet-chemical syntheses. Such
procedure yields bare metallic AgNPs that are completely
surfactant-free and with their intrinsic electronic properties.”*
Because the ablation is performed directly in anhydrous
chlorobenzene, no solvent-exchange or drying sequence is
required, thus avoiding water uptake by PEDOT:PSS and
preventing ionic or surfactant contamination of the HTL/
active-layer interface. The AgNP dispersion is dropped onto
the rotating substrate and, in <1 min, forms a uniform
interlayer without impacting the PEDOT:PSS layer.

This approach aimed to adjust the energy alignment at the
HTL-AL interface through a straightforward deposition
technique. Subsequently, a comprehensive analysis of device
behavior was performed by fitting the current—voltage (J—V)
characteristics using two models: (i) the traditional solar-cell
equivalent-circuit equation®® and (i) an analytical expression
assuming second-order recombination kinetics.”” Ultimately,
the incorporation of AgNPs also resulted in more consistent
device fabrication, reducing variability in key parameters such
as series and parallel resistances (R, and Ry,), fill factor (FF),
and PCE.

B EXPERIMENTAL SECTION

Bulk heterojunction organic solar cells (BHJ-OSCs) are
assembled layer by layer, in the following sequence: deposition

of the hole transport layer (HTL) on ITO-coated glass;
deposition of a nanostructured film of donor and acceptor
polymers; deposition of an electron transport layer (ETL); and
finally, evaporation of a metal electrode (cathode). In this
work, we built two similar devices: ITO/PEDOT:PSS/
PM6:Y6/PDINN/Ag, designated by SC, and ITO/PE-
DOT:PSS/AgNPs/PM6:Y6/PDINN/Ag, referred to as
AgNPs-SC. Each step of the device manufacturing procedure
(materials, the silver nanoparticle synthesis, and the device
structure) is described in the Supporting Information, along
with complementary characterization measurements (AFM,
UV—vis spectroscopy, transient photovoltage (TPV), transient
photocurrent (TPC), and Photo-CELIV). The surface
potential images have been acquired by the Kelvin probe
technique (Bruker Dimension Icon probe microscope): ITO
(4.7 eV), PEDOT:PSS (4.95 eV), AgNPs (5.35 eV), and Ag
(4.5 eV). HOMO values from the literature are PM6 (5.45
eV),”® Y6 (5.65 eV),” and PDINN (6.02 eV).”

B RESULTS AND DISCUSSION

Figure la presents the device geometry highlighting the
localization of the AgNP layer. Figure 1b presents the energy
level diagram for the OSCs built with the PEDOT:PSS/AgNPs
as the HTL. The surface potential images (Figure S6) pointed
out a work function of 4.94 eV for PEDOT:PSS, in accordance
with values in the literature®®*! and the manufacturer, while
the PEDOT:PSS/AgNP film presented a higher work function
of 5.35 eV. Therefore, this modified HTL presents a proper
energy level alignment to extract holes from the HOMO level
from copolymers that have been used as donors in OSCs, such
as PM6 (HOMO level =~ 5.45 eV)*>** and PTB7-Th (HOMO
level ~ 5.4 eV).** Therefore, as indicated by the kelvin probe
analyses, the AgNP layer improved both the interface
smoothness (see also Section 3.1) and the energy alignment
(Figure 1b) with the active layer, providing a lower energy
barrier for the process of hole extraction. This reduces hole
accumulation at the AL/HTL interface, reducing the
probability of e—h recombination in that region.

3.1. Morphology Analysis by AFM. AFM images
acquired using a high-resolution tip pointed out that the
AgNPs deposited on glass in static mode (see preparation
details in the Supporting Information) form aggregates with
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size dimensions on the order of SO nm (Figure 2a). However,
the height and phase image acquired from the films deposited
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Figure 2. Height and phase AFM images acquired from AgNP film on
glass prepared using the spin coating in (a) static mode, (b) dynamic
mode, and (c) the size distribution profile from the image in (b).

by spin coating in dynamic mode (substrate upon rotation
before the dropping) led to more isolated AgNPs and yielded
the real (multimodal) size distribution on the order of 3, S, and
~12 nm (Figure 2b). Elongated structures with lengths of ca.
100 nm and diameters of ca. 10 nm have also been observed,
but in minor amounts.

The histogram (Figure 2c) reveals that particles below 12
nm dominate the population; this is compatible with dynamic
light scattering (DLS) measurements of the NP suspension
(Figure S3) that shows an average size of the AgNPs in
suspension of ~7.8 nm with a predominant population around
4 nm; this prevalence of smaller AgNPs should help them
settle into shallow depressions on PEDOT:PSS and suppress
clustering, favoring the formation of a uniform, compact
overlayer. Considering that the AgNPs present a more uniform
and nonaggregated distribution along the surface when the film
is prepared in dynamic mode, this procedure was adopted to
produce AgNP films onto the PEDOT:PSS surface.

Figure 3a—c presents the AFM height images of different
batches of the pristine PEDOT:PSS film (thickness of 38.09 +
0.99 nm, obtained by AFM, Figure S4a), which exhibits an
amorphous landscape characterized by a root-mean-square
roughness (Rq) of 1.51 # 0.27 nm. In contrast, the
corresponding images of the PEDOT:PSS/AgNPs (thickness

of 46.16 + 0.96 nm, obtained by AFM, Figure S4b) shown in
Figure 3d—f reveals a uniform dispersion of AgNPs distributed
across the polymer surface, with the roughness attenuated to
0.86 + 0.11 nm. The ~43% decline in Rq is probably due to
the nanoparticles settling into and filling subnanometric
troughs, given that chlorobenzene is not expected to
appreciably swell or dissolve the underlying PEDOT:PSS
matrix. Such planarization removes nanoscopic asperities that
otherwise can act as charge-trapping pockets and local electric-
field hot spots at the PEDOT:PSS/active-layer junction.
Therefore, this smoother HTL surface, both topographically
and electronically, favors more efficient carrier extraction and
diminished recombination. Complementary energy-dispersive
X-ray spectroscopy (EDS) elemental mapping (Figure SS) of
AgNPs dispersed in a polystyrene matrix (10 wt % of AgNPs)
confirms that Ag-rich regions are devoid of oxygen,
demonstrating preservation of the metallic state throughout
film formation (in an inert atmosphere) and handling (in air).
Because LASiS produces surfactant and ligand-free AgNPs
directly in anhydrous chlorobenzene, these bare particles can
be deposited onto the PEDOT:PSS film without inducing
polymer swelling or leaving ionic residues, concomitantly
flattening the surface and up-shifting its work function from
4.95 to 5.35 eV (Figure S6), a level of interfacial optimization
that traditional wet-chemical routes struggle to match.

Moreover, Figure S7 shows the transmittance spectra
acquired from the resulting films. Similar transmittance spectra
have been obtained from these films, with a minor decrease at
some regions, and thus, with a minor impact in the amount of
light reaching the active layer with the additional AgNP layer.

3.2. J-V, TPC and TPV Transients, and Photo-CELIV
Measurements. As stated by the AFM and kelvin probe
analysis, the deposited layer of AgNPs on top of the
PEDOT:PSS layer contributes to aligning the HOMO of the
HTL with the HOMO of the active layer, which facilitates the
collection of holes by the anode. To probe this, first =V
measurements of both BHJ-OSC devices, SC and AgNPs-SC,
in the dark and under illumination (AM1.5G condition) are
shown in Figure 4a and Figure 4b, respectively. In the dark, the
diode responses of both devices are similar, and the distinction
between them emerges in favor of the AgNPs-SC device only
for voltages above 0.8 V, probably due to the decrease in the
series resistance. The presence of AgNPs did not change the
diode behavior in the region in which the J—V curve is
dominated by injection of charge carriers and effects of space
charge. On the other hand, under illumination, a noticeable
improvement in device performance when the AgNP layer is
added is shown in Figure 4b. Solar-cell parameter values,
obtained from 12 devices of each type (SC and AgNPs-SC),
are shown in Figure 5 and corroborate that the addition of
AgNPs improves the device performance. Figure 5 also shows
that the dispersions of the FF, R, Ry, and PCE decrease
considerably when depositing the nanoparticles at the
PEDOT:PSS-active layer interface. This shows that nano-
particles improve reproducibility in organic solar-cell manu-
facturing. The average values of these parameters are shown in
Table 1.

J=V results under illumination show that the AgNPs
deposited at the PEDOT:PSS-active layer interface leads to a
small decrease in Jsc but contribute to a slight increase in
open-circuit voltage. The slight decrease in short-circuit
current is due to the equivalent decrease in absorbance of
the AgNPs-SC device, as shown in Figure S7; this is further
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Figure 4. (a) J—V curves acquired in the dark, and (b) J—V curves acquired under illumination at the AM1.5G condition from the ITO/X/
PM6:Y6/PDINN/Ag devices, where X = PEDOT:PSS or PEDOT:PSS/AgNPs.

confirmed by TMM simulations of the experimental cells that
shows that the simulated Jgc, obtained from the exciton
generation rate (G(x)) (Figure S8), decreases ~3.5%, which is
compatible with the ~3% decrease of the experimental Jc.
Because Jgc is (slightly) reduced by the deposition of AgNPs,
the absorption enhancement from a possible plasmonic effect
due to an evanescent field can be ruled out, since there was no
significant increase in the electric current near the Jgc point.
The most significant improvement occurs in the fill factor; not
only the FF value shows a robust increase, but also a
considerable reduction in the dispersion of values for the 12
devices measured, with respect to the devices without AgNPs.
This reduction in FF dispersion for devices incorporating
AgNPs is consistent with the fill factor’s relationship to the
shape of the J—V curve and intrinsic device properties, such as
charge mobility and recombination rate,”” reflecting a more
reproducible device structure and fabrication. In contrast, both
Jsc and the maximum extracted power remain more variable
due to their heightened susceptibility to measurement
conditions (e.g., fluctuations in illumination or device
positioning), rather than the fabrication process itself. Similar

37667

improvement was observed in the series and parallel
resistances, which shows the close relationship between these
resistances and the fill factor. The significant improvement of
the FF can be explained by the convergence between the
HOMOs of the HTL and the active layer donor,® which
mitigates the accumulation of charge carriers at the interface.
Additionally, it is worth emphasizing that the accumulation of
charge carriers at internal interfaces of photovoltaic devices
strengthens nongeminate recombination and distorts the
electric field within the active layer. The ~8% relative increase
in PCE, is compatible with other works reported in literature
with modifications at the HTL/AI interface for similar
nonfullerene systems, such as the ~6% relative increase in
PCE for systems with PEDOT:PSS modified with sulfonated
graphene36 and gold nano double cones.”” This makes the
increase in PCE from %12 to #13% in devices with the AgNP
layer an interesting, straightforward, and remarkable method to
enhance both the PCE and reproducibility of such devices.
Finally, it is worth highlighting that the efficiency of the control
device is within the same range as those reported in the
literature for lower molecular mass PM6,** " since the
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Figure 5. Photovoltaic parameters obtained for the ITO/X/PM6:Y6/PDINN/Ag devices, where X = PEDOT:PSS or PEDOT:PSS/AgNPs. The

parameters R, and Ry, were extracted by fitting each cell’s J—V curve with the solar-cell equivalent-circuit equation.

13

Table 1. Average Photovoltaic Parameters

Voc Jic FF R R,  PCE

HTL W) (mA/cm?) (%) (Qcm?) (Q-cm?) (%)

SC 0.81 23.7 62.8 3.67 441.7 12.0

AgNPs- 0.82 23.1 68.6 1.87 542.7 13.0
SC

molecular mass of PM6 is an important parameter that
influences the performance of high-efficiency OSCs, as shown
in Figure S9 and Table SI.

Additionally, to show the versatility of the AgNP layer on
top of other types of HTL to optimize the HTL/AL interface,
tests were performed with Br-2PACz molecule as HTL, a
known substitute to PEDOT:PSS.*' The Br-2PACz monolayer
has a work function (5.21 eV, Figure S11b) that already
matches the PM6 HOMO (5.45 eV) more closely than
PEDOT:PSS (4.95 V). After spin-coating AgNPs (5.35 €V)
on Br-2PACz, the energy offset between the HTL and the
HOMO of PM6 is further reduced from 0.24 to ~0.10 eV and
the rms roughness drops from 3.85 to 0.88 nm (Figure S11a).
These changes translate into the performance trends shown in
Figure S10, where the i rises from ~23.8 to ~24.5 mA cm 2,
and the average PCE increases from ~13.5 to ~14.2%. Because
Br-2PACz already affords good energetic alignment, this
smaller (& $%) relative gain compared with the PEDOT:PSS

case is attributed mainly to the interfacial smoothing supplied
by the AgNP layer, which improves the charge collection
efficiency and overcompensates the small optical loss
introduced by the AgNP layer.

To further understand the charge dynamics in the cells with
PEDOT:PSS, transient measurements were performed; Figure
6 shows transient photocurrent (TPC) and transient photo-
voltage (TPV) measurements carried out with SC and AgNPs-
SC devices. The TPC decay curves of both devices showed
that decay times were similar, so it can be inferred that the
deposition of AgNPs into the device apparently does not
influence the charge extraction mechanism. This is further
confirmed by a log—log analysis of Jsc versus light intensity
plot (Figure S12a) that gives a = 0.945 for SC and 0.942 for
AgNPs-SC, values close to unity that confirm efficient
photogeneration/extraction and negligible bimolecular losses
under short-circuit conditions. TPV measurements show an
increase in the decay time of the AgNPs-SC device in
comparison to the SC one, indicating that the deposition of the
nanoparticles increases the recombination time. This is
consistent with the proposed reduction in charge accumulation
at the HTL-active layer interface, which decreases recombina-
tion and leads to a higher FF. This is further confirmed by a
semilog V¢ vs light intensity plot (Figure S12b) that yields
slopes of 1.39 kT/q for SC and 122 kT/q for AgNPs-SC,

= SC t = 222,76 ns
— AgNPs-SC t = 236,27 ns
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Figure 6. (a) TPC and (b) TPV response for ITO/X/PM6:Y6/PDINN/Ag devices, where X = PEDOT:PSS or PEDOT:PSS/AgNPs.
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evidencing a marked reduction in recombination losses when
the AgNP interlayer is present. This longer TPV decay,
together with the higher FF, is fully consistent with the
smoother surface observed by AFM images, suggesting
reduced trapping at the HTL-active layer interface; this
confirms that the morphological leveling and energy alignment
produced by the AgNP interlayer directly reduces interfacial
recombination.

To further investigate the impact of AgNPs on charge
extraction and mobility, Photo-CELIV measurements (Figure
7) were performed on both devices and analyzed using eq 1

T T

—sc
—— AgNPs-SC
0 : :

0 1 2 3

Time (us)

Current Density (mA/cm?)
o0

Figure 7. Photo-CELIV response of the ITO/X/PM6:Y6/PDINN/
Ag cells, where X = PEDOT:PSS or PEDOT:PSS/AgNPs.

from Bange et al.* This equation incorporates a correction for
CELIV transients, enabling the determination of mobility even
under conditions of high charge density and assuming that
Langevin recombination dominates. The obtained values are
understood as an average value of the mobilities of electrons

and holes (. = fupu, ).

ildz (0.8606—0.486Aj/j(0) _ 0.525e0‘0077Aj/j(0))
 max? 1
The calculated values for the mobilities are 4.89 X 10™* and
5.12 X 107" cm® V™! 57! for devices without and with AgNPs,
respectively. This slight increase can be explained by the
decrease in the charge accumulated at the HTL-active layer
interface, due to the intermediate energy step interposed by
the AgNPs, thus facilitating the flow of holes throughout the
device and increasing the hole collection rate by the ITO
electrode. That is, the enhanced hole flux between the active

7T

layer and the ITO electrode is compatible with the increased
effective charge carrier mobility.

3.3. J-V Analysis by a Photocurrent Model. For a more
detailed analysis of the role played by the deposition of AgNPs
at the HTL-active layer interface, we adjusted the J—V curves
under illumination by eq 2, which is a theoretical expression
derived by Amorim et al.*’ that includes the effect of second-
order recombination. It is well known that in BHJ-OSCs,
excitons generated by absorbed photons decay into a donor—
acceptor charge transfer state (CTS), which may or may not
dissociate into free charges: positive in the donor phase and
negative in the acceptor phase. The recombination of a CTS
pair (geminate recombination) is measured by the (1 — P)
factor, where P is the probability of dissociation of CTS. After
being dissociated, the photocarriers migrate toward the
electrodes where they will be collected, generating the device’s
electric current. However, during this migration, recombina-
tion between charge carriers originating from different CTS
can occur, resulting in the called nongeminate recombination.
In the Amorim model, the nongeminate recombination
between the photocarriers is assumed to be of second-order
kinetics, obeying a Langevin recombination mechanism. The

Langevin recombination coeflicient is yL(=g>, and in BHJ-
0

OSCs it is well accepted that the recombination coeflicient y is
reduced relative to the Langevin coefficient by a certain
factor.¥*™*

2eGPL( |
9

o

J(V) =

()

In eq 2, G, is the generation rate of CT states, Vj, is the
built-in voltage, and 6, is the physical parameter, defined by eq
3:

) G.PL(1 - P)y,
’ (uVy,)’ (3)
Figure 8a shows the fittings of SC and AgNPs-SC
photocurrents extracted from Figure 4b by eq 2. However,
the model ceases to be reliable for values close to the Vi,

since the derivation of eq 2 does not take into account the
contribution of the diffusion current, which is dominant when

®
=
(=}
q
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e I

[ )
o Iy
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Figure 8. (a) Fits to eq 2 for the ]V results of Figure 4b. ], is the photocurrent defined by the difference between current in light condition (J)
and the current in dark condition (Jp). (b) Calculated dependence of FF on the parameter ,, from the Amorim model. The black and red points
indicate the experimentally measured FF values for devices with PEDOT:PSS and PEDOT:PSS/AgNPs as hole transport layers.
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Table 2. Summary of Charge Generation, Transport, and Recombination Parameters

device 0, u (1074 cm? V! s7h)
SC 0.072 4.89
AgNPs-SC 0.029 512

the device’s internal field tends to zero. For the fittings, GP and
(1 — P) were used as adjustable parameters. The mobilities
were obtained from the Photo-CELIV measurements, V;; =

Voe, and }/L(=:—fo) is calculated using 3.5 for the dielectric

constant. The values of the fitted parameters (GP and P) are
exhibited in Table 2, together with 6, y = (1 — P)y,, and u
that were obtained from measured quantities as described
above. The saturation currents calculated by equation ], =
eGPL, using the GP values of Table 2, show excellent
agreement with the values recorded in Figure 4b. Note that
the largest change in those parameters occurs for the
recombination rate ¥, a factor of 2 lower for AgNPs-SC,
consistent with our interpretation that the reduced barrier for
hole extraction at the HTL-active layer interface decreases
nongeminate charge recombination in these devices.

The relationship that exists between the 6, parameter and
the FF was discussed by Bartesaghi et al., who defined 6, as the
ratio between the extraction rate and the recombination rate of
photocarriers in BHJ-OSCs.*® Based on simulated J—V curves
for a large range of FFs, they showed that FF follows a logistic
type of curve (S-shaped), in which, in a monolog scale, FF is
high for small values of 6, and low for large values of 8. In ref
46, the authors showed that results collected from 15 devices
with different combinations of donor and acceptor molecules
obey such FF-6, pattern. Amorim et al.”” have derived an
FF(6,) implicit analytical expression using eq 2 and making the
derivative of J(V)-V vanish at the maximum power point:

v(1 —v)?

FF(0) = , with 6,
@Qv-1{1+8)
(1= )3y — 1)
(2v — 1) 4)
where v = 2™ s the voltage at the maximum power point.

bi

The “universal FF(6,) curve” is depicted in Figure 8b, and it
was shown that the points of the measured FF for the SC and
AgNP devices vs the respective , values obtained from the
fitting parameters are located nearly perfectly on the FF(6,)
curve. This suggests that the conditions for the Amorin model
(balanced electron and hole mobilities, uniform internal
electric field, negligible contribution of diffusion currents,
and assuming second-order recombination) are valid for our
devices, at least for voltages up to the maximum power point.

3.4. Stability Tests. The stability of organic photovoltaic
devices under atmosphere conditions is a critical parameter,
particularly due to the known susceptibility of PEDOT:PSS to
moisture, as it is a hygroscopic material."”** The stability of
our devices was then investigated under the ISOS-T-2
protocol,”*° where we subjected unencapsulated cells to
200 h of thermal cycling between 25 and 85 °C in the dark and
in open air at £#32% RH. Such conditions better approximate
real-world, field-relevant stresses.

As depicted in Figure 9, AgNPs-SC demonstrates a markedly
slower efficiency decay than the reference SC device, with the
time required to reach 80% of the initial power conversion

GP (102 ecm™3 s7!) P y (107" cm® s71)
1.50 0.85 7.57
1.45 0.93 3.58
a) Temperature Cycles b) Temperature Cycles
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Figure 9. Normalized evolution of (a) Vo, (b) Jsc, (c) FF, and (d)
PCE for SC and AgNPs-SC devices, during the thermal cycling test
(temperature ramping from 25 to 85 °C, during 3.75 h cycles, with
RH of 32%) according to the ISOS-T-2 protocol.*”*°

efficiency (Tg) extending from ~14.5 h for SC to ~24 h for
AgNPs-SC, and the 50% threshold (Ts,) shifting from ~73 to
~116 h. Both the open-circuit voltage and the Jsc are better
preserved in the AgNPs-SC cells throughout the test,
confirming that the metallic interlayer mitigates humidity-
and temperature-driven degradation at the PEDOT:PSS/
active-layer interface.

For comparison, a shorter but harsher high-humidity test
(65—85% RH, 3 h, unencapsulated, Figure S13) likewise shows
that devices containing AgNPs retain a larger fraction of their
initial performance (~46 versus ~36% for SC), again
underscoring the protective role of the nanoparticle layer
under moisture exposure.

The superior performance of the AgNPs-SC can be
attributed to several factors. First, the AgNP layer appears to
mitigate moisture-induced degradation at the PEDOT:PSS
interface, which is often a critical site for performance loss. The
presence of the AgNP layer can help diminish the known
moisture-assisted decohesion of the PEDOT:PSS layer at the
AL interface,”’ reducing moisture ingress and thereby
preserving interfacial properties while minimizing the for-
mation of trap states at the interface. Additionally, since Vi is
inherently dependent on the difference between the quasi-
Fermi levels of the electrodes,” which in turn is influenced by
the energy levels of materials at the interface, and PEDOT:PSS
is known to experience shifts in its work function when
exposed to moisture,”” the AgNP layer may help delay these
effects at the HTL/AL interface.

Furthermore, while metallic nanoparticles can be susceptible
to oxidative processes that may decrease interfacial stability,
the AgNPs employed in this study were synthesized via the
LASiS technique in chlorobenzene. This method produces
nanoparticles with inherently stable surface chemistry due to
the absence of chemical precursors and stabilizing agents,
which often contribute to oxidative degradation.””>> This
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characteristic is likely to reduce their susceptibility to oxidation
under ambient conditions and temperature stress.

Lastly, considering the strategic positioning of the AgNPs at
the HTL/AL interface rather than embedded within the
PEDOT:PSS bulk, the potential for significant diffusion into
the layer is expected to be minimal. To verify this, cells were
fabricated and stored under dark conditions in a nitrogen
glovebox environment (~3 ppm of O, and moisture) for 3200
h. These conditions enable the observation of natural aging
processes, including potential diffusion phenomena. Figure S14
shows the normalized photovoltaic parameters after this period
for both device types, revealing that cells with and without the
AgNP layer retained ~88% of their initial PCE, which is
consistent with shelf life data reported for similarly structured
cells stored in the dark under an inert atmosphere.’*"” This
result indicates no significant difference between SC and
AgNPs-SC devices, and thus similar aging-related processes
under these conditions, even with the presence of the AgNP
layer. Overall, these findings suggest that the incorporation of
the AgNP layer not only enhances device performance and
moisture stability but also does not introduce additional long-
term degradation pathways, supporting its viability for stable,
high-performance organic photovoltaic devices.

4. CONCLUSIONS

This study demonstrates that the AgNP-modified PEDOT:PSS
layer resulted in an enhanced photovoltaic performance from
PM6:Y6-based organic photovoltaic, arising from improved
energy level alignment at the HTL/active layer interface. The
AgNP layer led to an 8% increase in PCE and an improved
Voc due to better HOMO alignment. TPV measurements
confirmed that the AgNP layer reduces recombination losses,
leading to an increased FF. Additionally, AgNPs improved the
reproducibility of the devices, as reflected by reduced
variability in key parameters, including FF, R, and Ry,. They
also provide a protective effect against humidity and thermally
induced degradation of the active layer-HTL interface,
improving the device stability.

Further insights from a second-order recombination kinetics
model highlighted the role of AgNPs in decreasing non-
geminate recombination at the HTL-active layer interface,
creating a more favorable charge transport environment.
Furthermore, we have also shown that the use of AgNPs on
top of the HTL is a simple and versatile strategy that can be
applied to different HTL layers, as long as there is a match of
the donor HOMO to the AgNPs' work function. These
findings suggest that AgNPs provide an effective means of
optimizing interfacial properties, which minimize recombina-
tion losses and enhance both efficiency, reproducibility and
stability of organic solar cells.
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