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Quantum thermodynamics studies how quantum systems and operations may be exploited as sources of
work to perform useful thermodynamic tasks. In real-world conditions, the evolution of open quantum
systems typically displays memory effects, resulting in a non-Markovian dynamics. The associated
information backflow has been observed to provide advantage in certain thermodynamic tasks. However, a
general operational connection between non-Markovianity and thermodynamics in the quantum regime has
remained elusive. Here, we analyze the role of non-Markovianity in the central task of extracting work via
thermal operations from general multitime quantum processes, as described by process tensors. By defining
a hierarchy of four classes of extraction protocols, expressed as quantum combs, we reveal three different
physical mechanisms (work investment, multitime correlations, and system-environment correlations)
through which non-Markovianity increases the work distillable from the process. The advantages arising
from these mechanisms are linked precisely to a quantifier of the non-Markovianity of the process. These
results show in very general terms how non-Markovianity of any given quantum process is a fundamental
resource that unlocks an enhanced performance in thermodynamics.
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Introduction—Designing efficient strategies to extract
work has been the cornerstone of thermodynamics since the
dawn of the first industrial revolution. The advent of
quantum thermodynamics [1] has opened new scenarios
to identify fundamental mechanisms, spanning from coher-
ence and correlations to reservoir engineering and even
ignorance [2–6], which may be exploited to extract addi-
tional work from quantum systems. The modern formu-
lation of quantum thermodynamics as a resource theory [7–
10] in fact provides an operational justification for the focus
on work extraction: given that the theory is asymptotically
reversible both at static [8,11,12] and dynamic [13–15]
levels, any state or channel transformation is fully charac-
terized in the asymptotic limit by its work content. We are
thus faced with the key question: how can we maximize
work extraction from general quantum processes?
When investigating quantum properties of general

thermodynamic tasks, Markovianity of the underlying
dynamics is often assumed for ease of analytical calcu-
lations, but such a simplification comes with a price to pay.

That is, in a Markovian dynamics any resource the system
loses to the environment at some point in time cannot be
later recovered and consumed for the task. Conversely, non-
Markovian dynamics allows for such a resource backflow
[16], which has been considered as a potential source of
advantage in a number of thermodynamic tasks [17–32].
While for a continuous-time evolution these phenomena
can be explored using tools such as non-Markovian master
equations [33–35], dynamical maps [36], or continuous
thermomajorization [37–40], to conclusively investigate
the role of non-Markovianity in thermodynamics we
may need to resort to an alternative approach.
Let us adopt a practical standpoint where an experi-

menter can access the system at a discrete set of times. The
dynamics is then better described by means of the process
tensor framework [41]. A desirable feature of this approach
is that the quantum comb structure [42] of process tensors
allows a natural definition of quantum (non-)Markovianity
[43], removing any ambiguity present in other approaches
[44–49]. This makes process tensors useful for under-
standing memory effects in quantum dynamics [50–64] and
revisiting problems that had mostly been treated under the
Markov hypothesis, such as quantum process tomography
[65–70], simulation [71–77], and thermalization [78–83],
among others [84–89].
In this Letter, we establish non-Markovianity of quantum

processes as a fundamental resource for work extraction in
thermodynamics. Building on recent results for work cost
and work distillable from quantum states [8,11,12] and
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channels [13–15], we quantify the net work W extractable
from general multitime quantum process tensors. We define
a hierarchy of four classes of strategies [90], labeled,
respectively, as sequential, joint, global, and comb, which
enable progressively more work to be extracted. Crucially,
for a Markovian process, these strategies are all equivalent

and the hierarchy collapses. On the other hand, for a gene-
ral process we identify the three mechanisms of work in-
vestment, multitime correlations, and system-environment
correlations, through which non-Markovianity strictly
enhances work extraction at every step up the hierarchy:

Wseq ≤
↑

work

investment

Wjoint ≤
↑

multitime

correlations

Wglobal ≤
↑

system-environment

correlations

Wcomb: ð1Þ

Although these mechanisms may coexist in general, we
provide examples in which their action is isolated, validat-
ing our definitions and interpretation. We also derive
quantitative bounds precisely linking the enhancement
provided by each mechanism to the amount of non-
Markovianity present in the process. Our results bridge
the gap between quantum dynamics and thermodynamics,
providing a fundamental characterization of the advantages
unlocked by non-Markovian processes in thermodynamic
tasks.
Setup—We consider the resource-theoretic scenario in

which an experimenter can perform thermal operations for
free to implement thermodynamic tasks [7–10]. That is,
given a bath Bwith HamiltonianHB and temperature T and
a system S with (time-independent) Hamiltonian HS [91],
the operations ETO the experimenter can perform on the
state ρS of the system are of the form

ETOðρSÞ ¼ trB½UðρS ⊗ γBÞU†�; ð2Þ

where γB ≔ e−HB=kT=tr½e−HB=kT � is the bath thermal state, k
is Boltzmann’s constant, and U is a unitary operator that
acts jointly on system and bath ensuring conservation of the
total energy, ½U;HS þHB� ¼ 0.
The goal of the experimenter is to extract, by means of

thermal operations, the maximum amount of work from
any given nonthermal resource—which could be a state, a
channel, or a multitime process—in the asymptotic setting
in which n → ∞ copies of the given resource are available.

The work WðρSÞ asymptotically distillable from a general
state ρS is known to be given by kTSðρSjjγSÞ, where
SðρjjσÞ ¼ tr½ρðln ρ − ln σÞ� is the relative entropy between
the states ρ and σ [8,11,12]. Reference [8] also showed that
state conversion is asymptotically reversible, implying that
the work needed to transform a thermal state into another
state ρ is also given by WðρÞ. Similarly, work extraction
from a nonthermal channel E was discussed in Ref. [13],
which showed that the best protocol consists of preparing
some optimal state ρ at a costWðρÞ, then using the channel
to obtain the state EðρÞ, and finally extracting WðEðρÞÞ of
work in the asymptotic limit. In this way, the maximum
work distillable from a channel E is given by WðEÞ ≔
maxρfW½EðρÞ� −WðρÞg.
We now take the next step in this direction and analyze

work extraction from general multitime quantum processes.
Consider that the experimenter can prepare an initial state
and then perform a sequence of control operations on the
system. In between these operations the system interacts
with an uncontrolled environment, giving rise to a multi-
time open quantum system dynamics. Such a dynamics is
described by a process tensor P mapping the sequence of
control operations S to the final state of the system [41].
The physical constraints on the process imply that, for a
process with an initial state preparation and n − 1 control
operations, P belongs to the set Pn of n-step quantum
combs [42]. Consequently, we have S ∈Sn, where Sn is the
set of quantum combs mapped by the elements of Pn to a
final state σ ¼ PðSÞ, as in Fig. 1(a).

(a) (b)

FIG. 1. (a) General multitime quantum process. The experimenter prepares an initial state ρ for the system and then performs the
control operations described by the channels A1 and A2. In between operations the system interacts with an uncontrolled environment.
The dynamics is described by a process tensor P mapping the control operations to the final state of the system. The physical constraints
on the process imply P is a quantum comb. Since the control operations may also be correlated by an ancilla, they are also in general
described by a comb S. (b) Channel P2jρ1 associated with the second step of the dynamics described by P once the input state ρ1 of the
first step is specified and the output discarded. In general, the channel describing the evolution in any given step of the dynamics will be
conditioned on all previous inputs, but never on the subsequent ones since the process is time ordered.
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Importantly, the structure of P is also the same as that of
a sequence of quantum channels with memory [92], so it
can be seen as an ordered mapping from a set of input states
to a set of output states. In this sense, while the first step of
the process is always a proper channel P1, the subsequent
steps may be channels conditioned on the inputs at previous
times, as in Fig. 1(b). However, if that is not the case and
the process consists of a sequence of independent channels,
we say the process is Markovian, as no memory is carried
along the dynamics [43]. This implies that extracting work
from a Markovian process is the same as extracting work
from a set of channels, for which one can apply the protocol
of Ref. [13] and the work distillable from the process will
simply be the sum of the works distillable from each
channel. Therefore, any fundamental difference between
extracting work from channels and general processes can
only come from non-Markovian effects. In this sense, it is
crucial to relate the amount of extractable work to the
amount of non-Markovianity of the process.
To quantify the non-Markovianity of any given process

P ∈Pn, we employ the following distinguishability mea-
sure with respect to the closest Markovian process:

NðPÞ ≔ min
Q∈PM

n

S̄ðPjjQÞ; ð3Þ

where PM
n is the set of Markovian n-step process

tensors and

S̄ðPjjQÞ ≔ max
S ∈Sn

S½PðSÞjjQðSÞ� ð4Þ

is the relative entropy between process tensors P and Q
[89]. This is a fully bona fide measure fulfilling the
prescriptions demanded by the resource theory of non-
Markovianity [61].
Having set the stage with background results and

definitions, we now proceed to the hierarchy (1) of work
extraction protocols for multitime quantum processes. We

begin with the simplest one, which makes no use of the
non-Markovianity of the process and is thus set as a
reference for the other ones.
Sequential optimization—The first protocol we propose

is characterized by sequential optimization of inputs and
local extraction of work. As described in Fig. 1(b), for any
process P ∈Pn, the channel P1 associated with its first step
is always well defined. Therefore, for this channel, we
could apply the protocol from Ref. [13] to extractWðP1Þ of
work in the first step. This is achieved by preparing an
optimal state ρ1 and feeding it to the first step of the
process, then extracting work from the first output state
P1ðρ1Þ. After using ρ1 as the first input, the second step of
the process will be described by a channel P2jρ1 , for which
the procedure could be repeated, leading to the extraction of
WðP2jρ1Þ of work. The sequential optimization protocol
consists of iterating this procedure until the last step of the
process. A rigorous definition for the total work WseqðPÞ
extracted through the sequential optimization protocol is
given in the Appendix.
Joint optimization—While the result of Ref. [13] implies

WseqðPÞ is the maximum work extractable fromMarkovian
processes, this does not hold in general in the presence of
non-Markovianity. Consider, for example, the process P of
Fig. 2(a). Notice that the channelP1 has the thermal state γS
as a fixed output, such that no work can be extracted from
its output independently of the input. In this case, sequen-
tial optimization implies the optimal first input is ρ1 ¼ γS,
as it can be prepared for free, yielding WðP1Þ ¼ 0. This
implies the second channel P2jρ1 has XðγSÞ as a fixed
output. Again, the optimal input is ρ2 ¼ γS, yield-
ing WseqðPÞ ¼ kTS½XðγSÞjjγS� ¼ ð1 − e−E=kTÞE.
It is possible, however, to make use of the non-

Markovianity of the process to extract even more work
from it. If the experimenter changes the first input to ρ1 ¼
j0ih0j, at a cost of kT lnð1þ e−E=kTÞ, the second output will
be j1ih1j, from which one can extract Eþ kT lnð1þ
e−E=kTÞ of work, resulting in a net distilled work equal

(a) (b) (c)

FIG. 2. Examples of non-Markovian processes. (a) A process where sequential optimization is not optimal. Both system and
environment are qubits with HamiltonianH ¼ Ej1ih1j. The initial state of the environment is thermal and the first step of the process is a
SWAP gate between system and environment, while the second step is a NOT gate on the environment, Xð•Þ ¼ X · X†,
X ¼ j0ih1j þ j1ih0j, followed by another SWAP gate. (b) A process where no work can be extracted through joint optimization.
The environment is composed by two qubits E1 and E2 with Hamiltonians HE1

¼ HE2
¼ Ej1ih1j. The system is also a qubit with the

same Hamiltonian. The initial state of the environment is jψiE12
∝ j00i þ e−E=2kT j11i, such that it is locally thermal despite being

globally pure. Each step of the process is a SWAP interaction between the system and a single part of the environment, resembling a
collisional model but allowing for non-Markovianity since the ancillae are initially correlated. (c) A process where global extraction is
not optimal. Both system and environment are qubits with HamiltonianH ¼ Ej1ih1j. The environment is initially thermal at temperature
T. The first step of the dynamics consists of a controlled-NOT (CNOT) gate with control on the environment and target on the system. In
the second step we have the same CNOT gate, but this time followed by a NOT gate operation on the system.
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to E. This advantage with respect to the sequential opti-
mization comes from the fact that the non-Markovianity of
the process allows the experimenter to spend some work in
the first step to extract even more in the second one. This
mechanism is what we call work investment (WI).
To make full use of work investment, it is necessary to

perform a joint optimization protocol, in which the inputs
of each step of the process are chosen such that the total
work distilled is maximized. The work WjointðPÞ extract-
able through joint optimization is mathematically defined
in the Appendix. Since this construction encompasses the
cases where sequential optimization is optimal, it is
immediately clear that WjointðPÞ is always greater than
or equal to WseqðPÞ, with the drawback that in practice the
joint optimization is much harder to be computed than the
sequential one.
Knowing that sequential optimization is optimal when

the process is Markovian, we should expect the advantage
of work investment to be little if the amount of non-
Markovianity in the process is little. To validate such an
intuition, we define the additional work extractable from
work investment as ΔWWIðPÞ ≔ WjointðPÞ −WseqðPÞ,
and in Supplemental Material [93] we prove the following
continuity bound.
Theorem 1—For any n-step process P ∈Pn with non-

Markovianity NðPÞ, describing the evolution of a system S
with Hamiltonian HS and in contact with a bath at
temperature T, it holds that

ΔWWIðPÞ ≤ kT F ðHS; T; nÞ½NðPÞ�1=4; ð5Þ

where

F ðHS; T; nÞ ¼ 21=4½
ffiffiffi

2
p

ln 2þ SðΠEmax
jjγSÞ�ðn − 1Þ;

and ΠEmax
¼ jEmaxihEmaxj is the projector onto the most

energetic eigenstate of HS.
Being a continuity bound, the above inequality is not

tight in general [94], but it is important to show that the
amount of non-Markovianity quantitatively limits the
thermodynamic yield obtainable from an initial work
investment. This is of practical relevance, since typical
processes have small non-Markovianity if the environment
is large enough [52].
Global optimization—Work investment, however, is not

the only mechanism through which non-Markovianity can
enhance work extraction. To see this, consider the process
of Fig. 2(b). Notice that, independently of the chosen inputs
ρ1 and ρ2, the two outputs of the process will locally be
thermal states γS, from which no work can be extracted.
Nevertheless, if the experimenter has access to an auxiliary
quantum system, which we call a side memory [95], where
the first output of the process can be stored until after the
second step, it is possible to perform work extraction
from the global output state ρ12 ¼ jψihψ j12, obtaining

Wðρ12Þ ¼ 2kTSðγÞ > 0. This happens because non-
Markovian dynamics may create correlations between
outputs at different times, even if the inputs were initially
uncorrelated. This mechanism is what we call multitime
correlations (MTC).
To fully explore themultitime correlations that result from

the process, the experimenter must perform a global
optimization protocol, in which all the outputs are stored
until the end and work is distilled from the global final state.
The inputs are chosen as to achieve the maximum globally
extractable work WglobalðPÞ. Besides the computational
complexity of carrying out such optimizations, the imple-
mentation of this protocol is likely to be experimentally
challenging in most cases, as the amount of side memory
resources scaleswithn. Still, from a theoretical standpoint, it
shows a second way through which non-Markovianity
influences work extraction. Importantly, the work ex-
tractable from multitime correlations ΔWMTCðPÞ ≔
WglobalðPÞ −WjointðPÞ is directly related to the non-
Markovianity of the process through the following result,
which is also proven in Supplemental Material [93].
Theorem 2—For any n-step process P ∈Pn with non-

Markovianity NðPÞ, describing the evolution of a system S
in contact with a bath at temperature T, it holds that

ΔWMTCðPÞ ≤ kTNðPÞ: ð6Þ

Another meaningful way to understand the result above
is by defining the maximum work Wmax

i ðPÞ locally
extractable in the i-th step of a process P as WðPijrÞ
maximized over all possible vectors r of previous input
states. Theorem 2 then implies that, while for joint
optimization we have WjointðPÞ ≤ P

n
i¼1 W

max
i ðPÞ, for

global extraction we get

WglobalðPÞ ≤
X

n

i¼1

Wmax
i ðPÞ þ kTNðPÞ: ð7Þ

This clearly shows how the global protocol allows for work
distillation using not only the local athermalities of the
process, but also the multitime correlations arising from its
non-Markovianity as extra resource. This is crucial, for
example, in the process of Fig. 2(b), in which the Wmax

i are
all zero and yet there is nonzero work to be extracted from
the correlations. In fact, in Sec. VI of [93] we show that, for
the example of Fig. 2(b), the bound given by Theorem 2
is tight.
Comb optimization—All three protocols we have dis-

cussed so far involve preparing uncorrelated input states
and feeding them into each step of the process. However, as
shown in Fig. 1(a), we could in principle have general
channels connecting consecutive time steps. To see how
this generalization may lead to a further advantage in work
extraction, we consider the process P from Fig. 2(c). By
preparing the first input ρ1 ¼ j0ih0j and using an identity
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channel I to connect the two steps, we obtain the final state
j1ih1j, yielding a net extracted work of E. On the other
hand, using a global extraction protocol we strictly have
WglobalðPÞ < E [93]. The advantage in this case comes
from the fact that, in the first step of the dynamics, system
and environment create correlations that, despite not being
immediately useful for work extraction, allow for the state
j1ih1j to be achievable in the second step, from which a
higher amount of work can be distilled. If instead the
experimenter stores the first output and prepares a new
input, the state j1ih1j is not achievable anymore because
system and environment are not initially correlated.
Importantly, this advantage cannot be present in a
Markovian dynamics as system-environment correlations
are lost in between time steps. For these reasons, the last
mechanism through which non-Markovianity powers up
work extraction is named system-environment correla-
tions (SEC).
The protocol that allows the experimenter to use all

system-environment correlations present in a process con-
sists of performing general quantum channels on the
system in between the steps of the dynamics. To achieve
all possible system transformations, these channels may be
connected by an ancilla. Notice that, as shown in Fig. 1(a),
this is equivalent to performing a comb S on the system,
which is the most general mapping from a process tensor to
a final state. Therefore, this class of protocols, named comb
optimization, is the most general possible for extracting
work from a multitime quantum process, containing all
previously discussed ones.
Note that, for optimizing over combs to obtain the most

efficient protocol, we need to use the fact that the work cost
of implementing a general nonthermal channel E is given
by WðEÞ [14,15]. With this in mind, we can provide a
continuity bound to the work gain ΔWSECðPÞ ≔
WcombðPÞ −WglobalðPÞ obtainable through system-envi-
ronment correlations [93], where WcombðPÞ is the work
extractable from the process P using comb optimization,
defined in the Appendix.
Theorem 3—For any n-step process P ∈Pn with non-

Markovianity NðPÞ, describing the evolution of a system S
with Hamiltonian HS and in contact with a bath at
temperature T, it holds that

ΔWSECðPÞ ≤ kT GðHS; T; nÞ½NðPÞ�1=4; ð8Þ

where

GðHS; T; nÞ ¼ 21=4½
ffiffiffi

2
p

ln 2þ ð2n − 1ÞSðΠEmax
jjγSÞ�;

and ΠEmax
¼ jEmaxihEmaxj is the projector onto the most

energetic eigenstate of HS.
Conclusion—We have established the fundamental role

of non-Markovianity in thermodynamic work extraction
from general quantum processes. We defined a hierarchy of

four classes of extraction protocols [Eq. (1)], which led to
the identification of three mechanisms through which non-
Markovianity enhances work extraction: work investment,
multitime correlations, and system-environment correla-
tions. We presented examples and bounds that show how
the advantage these mechamisms provide disappears when
the process has a vanishing degree of non-Markovianity.
The combined effect of these mechanisms (Theorems 1–3)
leads to a remarkable characterization of the work extract-
able from an n-step quantum process P under the most
general comb optimization,

WcombðPÞ ¼ WseqðPÞ þ ΔWNðPÞ; ð9Þ

where Wseq is the best that one can do in the Markovian
case, while ΔWN ≔ ΔWWI þ ΔWMTC þ ΔWSEC captures
the additional work obtainable by non-Markovian resour-
ces, which is bound by a monotonic function of the non-
Markovianity degree NðPÞ of the process, ΔWNðPÞ≤
kT½NðPÞþðð3n−2ÞSðΠEmax

jjγSÞþ
ffiffiffi

2
p

ln2nÞð2NðPÞÞ1=4�.
Our Letter establishes a new qualitative and quantitative

framework to investigate non-Markovian effects in quan-
tum thermodynamics, which may be seen to complement
that of Refs. [37–40] in the context of athermality resource
theories. Moreover, our results extend those of Ref. [16]
and help understand the thermodynamic advantages shown
in Refs. [17–32] on a more fundamental level. The bounds
we proved here may also be employed to define thermo-
dynamic witnesses of non-Markovianity, and by splitting
the temporal correlations into classical and quantum [96–
100], one could obtain witnesses of purely quantum
memory for general dynamics [62,101]. We expect our
results to stimulate further investigation on the interplay
between non-Markovianity and thermodynamics, going
beyond the asymptotic regime considered here, to get more
experimentally feasible estimates of the work cost and yield
of implementing quantum processes with finite resources.
This may lead to a deeper comprehension of the energetics
of quantum systems [102], potentially inspiring optimal
designs for sustainable near-term quantum technologies.
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Appendix: Definitions—We denote by Pijr the quan-
tum channel describing the i-th step of the process
P ∈Pn, given the inputs of previous steps were the first
i − 1 entries of the vector r ¼ ðρ1;…; ρi−1;…; ρnÞ. Then,
let ρmax

ijr be the state maximizing the work extractable
from the channel Pijr, that is,

ρmax
ijr ≔ argmax

ρ
½WðPijrðρÞÞ −WðρÞ�: ðA1Þ

This allows for the following definition.
Definition A1—Let rseq be the vector of states sequen-

tially optimizing the work extraction from a process
P ∈Pn, that is, rseq1 ¼ ρmax

1 and rseqi ¼ ρmax
ijðrseq

1
;…;rseqi−1Þ

.
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The total work WseqðPÞ extractable from a process P ∈Pn
through the sequential optimization protocol is given by

WseqðPÞ ≔
X

n

i¼1

WðPijrseqÞ: ðA2Þ

The joint optimization protocol is given by relaxing the
sequential optimization to a joint one, as follows.
Definition A2—The total work WjointðPÞ extractable

from a process P ∈Pn through the joint optimization
protocol is given by

WjointðPÞ ≔ max
r

X

n

i¼1

WðPijrÞ; ðA3Þ

where the maximization is over all possible vectors r of
inputs.
For the global optimization, one can define a class of

combs that implement it. Let Sglobal
n ⊂ Sn be the set of

combs consisting of inputting state ri ¼ ρi to the i-th step
and storing all the outputs until the end. Any such comb Sr
is uniquely defined by the vector r of states it inputs to the
process. The implementation cost WðSrÞ is simply
P

n
i¼1WðρiÞ and the work extractable in the end is

W½PðSrÞ�, leading to the following definition.

Definition A3—The total work WglobalðPÞ extractable
from a process P ∈Pn through the global optimization
protocol is given by

WglobalðPÞ ≔ max
Sr ∈Sglobal

n

fW½PðSrÞ� −WðSrÞg: ðA4Þ

Finally, to define comb optimization we just need to
clarify the cost of implementing general combs. Unlike the
case of states and channels, it is not known whether the
work cost of implementing a comb is asymptotically equal
to the work extractable from it. Since any comb S ∈Sn can
be dilated as the action of n channels Ei acting both on the
system and an ancilla initially in the state σA, we take the
cost WðSÞ to be simply WðσAÞ þ

P

n
i¼1WðEiÞ minimized

over all possible dilations of S. This leads us to the last
definition.
Definition A4—The total work WcombðPÞ extractable

from a process P ∈Pn through comb optimization is
given by

WcombðPÞ ≔ max
S ∈Sn

fW½PðSÞ� −WðSÞg: ðA5Þ
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