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a b s t r a c t 

Texture analysis is a classical yet challenging task in computer vision for which deep neural networks 

are actively being applied. Most approaches are based on building feature aggregation modules around 

a pre-trained backbone and then fine-tuning the new architecture on specific texture recognition tasks. 

Here we propose a new method named R andom encoding of A ggregated D eep A ctivation M aps (RADAM) 

which extracts rich texture representations without ever changing the backbone. The technique consists 

of encoding the output at different depths of a pre-trained deep convolutional network using a Random- 

ized Autoencoder (RAE). The RAE is trained locally to each image using a closed-form solution, and its 

decoder weights are used to compose a 1-dimensional texture representation that is fed into a linear 

SVM. This means that no fine-tuning or backpropagation is needed for the backbone. We explore RADAM 

on several texture benchmarks and achieve state-of-the-art results with different com putational budgets. 

Our results suggest that pre-trained backbones may not require additional fine-tuning for texture recog- 

nition if their learned representations are better encoded. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

For several decades, texture has been studied in Computer Vi- 

ion as a fundamental visual cue for image recognition in several 

pplications. Despite lacking a widely accepted theoretical defini- 

ion, we all have developed an intuition for textures by analyz- 

ng the world around us from material surfaces in our daily life, 

hrough microscopic images, and even through macroscopic im- 

ges from telescopes and remote sensing. In digital images, one 

bstract definition is that texture elements emerge from the lo- 

al intensity constancy and/or variations of pixels producing spatial 

atterns roughly independently at different scales [1] . 

The classical approaches to texture recognition focus on 

he mathematical description of the textural patterns, consid- 

ring properties such as statistics [2] , frequency [3] , complex- 

ty/fractality [4,5] , and others [6] . Many such aspects of texture are 

hallenging to model even in controlled imaging scenarios. More- 

ver, the wild nature of digital images also results in additional 
∗ Corresponding authors at: São Carlos Institute of Physics, University of São 
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ariability, making the task even more complex in real-world ap- 

lications. 

Recently, the power of deep neural networks has been ex- 

ended to texture analysis by taking advantage of models pre- 

rained on big natural image datasets. These transfer-learning ap- 

roaches combine the general vision capabilities of pre-trained 

odels with dedicated techniques to capture additional texture in- 

ormation, achieving state-of-the-art performance on several tex- 

ure recognition tasks [7–9] . Therefore, most of the recent works 

n deep texture recognition propose to build new modules around 

 pre-trained deep network (backbone) and to retrain the new ar- 

hitecture for a specific texture analysis task. However, even if the 

ew modules are relatively cheap in terms of computational com- 

lexity, resulting in good inference efficiency, the retraining of the 

ackbone itself is usually costly. Going in a different direction, Ran- 

omized Neural Networks [10–12] proposes a closed-form solution 

or training neural networks, instead of the common backpropaga- 

ion, with various potential applications. For instance, the training 

ime of randomization-based models was analyzed [13] on datasets 

uch as MNIST, resulting in gains up to 150 times. These gains can 

e expressive when hundreds of thousands of images are used to 

rain a model. 

https://doi.org/10.1016/j.patcog.2023.109802
http://www.ScienceDirect.com
http://www.elsevier.com/locate/pr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109802&domain=pdf
mailto:scabini@ifsc.usp.br
mailto:bruno@ifsc.usp.br
https://doi.org/10.1016/j.patcog.2023.109802
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In this work, we propose a new module for texture feature ex- 

raction from pre-trained deep convolutional neural networks (DC- 

Ns). The method, called R andom encoding of A ggregated D eep 

 ctivation M aps (RADAM), goes in a different direction than re- 

ent literature on deep texture recognition. Instead of increasing 

he complexity of the backbone and then retraining everything, we 

ropose a simple codification of the backbone features using a new 

andomized module. The method is based on aggregating deep ac- 

ivation maps from different depths of a pre-trained convolutional 

etwork, and then training Randomized Autoencoders (RAEs) in a 

ixel-wise fashion for each image, using a closed-form solution. 

his module outputs the decoder weights from the learned RAEs, 

hich are used as a 1-dimensional image representation. This ap- 

roach is simple and does not require hyperparameter tuning or 

ackpropagation training. Instead, we propose to attach a linear 

VM at the top of our features, which can be simply used with 

tandard parameters. Our code is open and is available in a public 

epository. 1 In summary, our main contributions are: 

i) We propose the RADAM texture feature encoding technique ap- 

plied over a pre-trained DCNN backbone and coupled with a 

simple linear SVM. The model achieves impressive classifica- 

tion performance without needing to fine-tune the backbone, 

in contrast to what has been proposed in previous works. 

ii) Bigger backbones and better pre-training improve the perfor- 

mance of RADAM considerably, suggesting that our approach 

scales well. 

. Background 

We start by conducting a literature review on texture analysis 

ith deep learning and randomized neural networks. 

.1. Texture analysis with deep neural networks 

In this work, we focus on transfer-learning-based texture anal- 

sis by taking advantage of pre-trained deep neural networks. For 

 more comprehensive review of different approaches to texture 

nalysis, the reader may consult [14] . There have been numer- 

us studies involving deep learning for texture recognition, and 

ere we review them according to two approaches: feature extrac- 

ion or end-to-end fine-tuning. Some studies explore CNNs only 

or texture feature extraction and use a dedicated classifier apart 

rom the model architecture. Cimpoi et al. [15] was one of the 

rst works on the subject, where the authors compare the effi- 

iency of two different CNN architectures for feature extraction: 

C-CNN, which uses a fully connected (FC) layer, and FV-CNN, 

hich uses a Fisher vector (FV) [7] as a pooling method. They 

emonstrated that, in general, FC features are not that efficient be- 

ause their output is highly correlated with the spatial order of 

he pixels. Later on, Condori and Bruno [16] developed a model, 

alled RankGP-3M-CNN, which performs multi-layer feature aggre- 

ation employing Global Average Pooling (GAP) to extract the fea- 

ure vectors of activation maps at different depths of three com- 

ined CNNs (VGG-19, Inception-V3, and ResNet50). They propose a 

anking technique to select the best activation maps given a train- 

ng dataset, achieving promising results in some cases but at the 

ost of increased computational load, since three backbones are 

eeded. Lyra et al. [17] also proposes feature aggregation from 

ultiple convolutional layers, but pooling is performed using an 

V-based approach (Multilayer-FV). 

Numerous studies propose end-to-end architectures that 

nable fine-tuning of the backbone for texture recognition. 

hang et al. [18] proposed an orderless encoding layer on top of a 
1 https://github.com/scabini/RADAM 
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CNN, called Deep Texture Encoding Network (Deep-TEN), which 

llows images of arbitrary size. Xue et al. [19] introduces a Deep 

ncoding Pooling Network (DEPNet), which combines features 

rom the texture encoding layer from Deep-TEN and a global aver- 

ge pooling (GAP) to explore both the local appearance and global 

ontext of the images. These features are further processed by a 

ilinear pooling layer [20] . In another work, Xue et al. [21] also 

ombined features from differential images with the features 

f DEPNet into a new architecture. Using a different approach, 

hai et al. [22] proposed the Multiple-Attribute-Perceived Network 

MAP-Net), which incorporated visual texture attributes in a multi- 

ranch architecture that aggregates features of different layers. 

ater on [9] , they explored the spatial dependency among texture 

rimitives for capturing structural information of the images by 

sing a model called Deep Structure-Revealed Network (DSRNet). 

hen et al. [23] introduced the Cross-Layer Aggregation of a 

tatistical Self-similarity Network (CLASSNet). This CNN feature 

ggregation module uses a differential box-counting pooling layer 

hat characterizes the statistical self-similarity of texture images. 

ore recently, Yang et al. [8] proposed DFAEN (Double-order 

nowledge Fusion and Attentional Encoding Network), which 

akes advantage of attention mechanisms to aggregate first- and 

econd-order information for encoding texture features. Fine- 

uning is employed in these methods to adapt the backbone to the 

ew architecture along with the new classification head. 

As an alternative to CNNs, Vision Transformers (ViTs) [24] are 

merging in the visual recognition literature. Some works have 

riefly explored their potential for texture analysis through the 

escribable Textures Dataset (DTD) achieving state-of-the-art re- 

ults. Firstly, ViTs achieve competitive results compared to CNNs, 

ut the lack of the typical convolutional inductive bias usually re- 

ults in the need for more training data. To overcome this issue, 

 promising alternative is to use attention mechanisms to learn 

irectly from text descriptions about images, e.g.using Contrastive 

anguage Image Pre-training (CLIP) [25] . There have also been pro- 

osed bigger datasets for the pre-training of ViTs, such as Bam- 

oo [26] , showing that these models scale well. Another approach 

s to optimize the construction of multitask large-scale ViTs such 

s proposed by Gesmundo [27] with the μ2 Net+ method. 

.2. Randomized neural networks for texture analysis 

A Randomized Neural Network [10–12] , in its simplest form, 

s a single-hidden-layer feed-forward neural network whose in- 

ut weights are random, while the weights of the output layer are 

earned by a closed-form solution, in contrast to gradient-descent- 

ased learning. Recently, some works have investigated RNNs to 

earn texture features for image analysis. S Junior et al. [28] used 

mall local regions of one image as inputs to an RNN, and the cen- 

ral pixel of the region as the target. The trained weights of the 

utput layer for each image are then used as a texture represen- 

ation. Ribas et al. [29] improved the previous approach with the 

ncorporation of graph theory to model the texture image. 

The training of 1-layer RNNs as employed in previous works is a 

east-squares solution at the output layer. First, consider X ∈ R 

n ×z 

s the input matrix with n training samples and z features, and 

 = φ(XW ) as the forward pass of the hidden layer with a sig-

oid nonlinearity, where W ∈ R 

z×q represents the random input 

eights for q neurons. Given the desired output labels Y , the out- 

ut weights f are obtained as the least-squares solution of a sys- 

em of linear equations: 

f = Y g T (gg T ) −1 , (1) 

here g T (gg T ) −1 is the Moore–Penrose pseudo-inverse [30,31] of 

atrix g. 

https://github.com/scabini/RADAM
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An important aspect of RNNs is the generation of random 

eights for the first layer. Evidence suggests that this choice has 

ittle impact once the weights are fixed. In this sense, a common 

rend among previous works is the use of the Linear Congruential 

enerator (LCG), a simple pseudo-random number generator in the 

orm of x k +1 = (ax k + b) mod c. 

The RNN can be used as a randomized autoencoder 

RAE) [13] by considering the input feature matrix X as the 

arget output Y = X . In this sense, the model is composed of a

andom encoder and a least-squares-based decoder that can map 

he input data. Kasun et al. [13] also suggests the use of random 

rthogonal weights [32] for the initialization of the encoder. In 

his way, the weight matrix f will represent the transforma- 

ion of the projected random space back into the input data X

output). 

. RADAM for texture feature aggregation and encoding 

The majority of the previous works on deep texture recogni- 

ion consider end-to-end models that couple new modules around 

 pre-trained backbone and involve fine-tuning the new archi- 

ecture on specific texture recognition tasks. Here, we propose a 

ew feature encoding module that acts on the backbone only as 

 feature extractor, and a dedicated classifier is applied over the 

btained features (no backbone fine-tuning is done). The main 

dea of the proposed RADAM method is to use multi-depth fea- 

ure aggregation and randomized pixel-wise encoding to compose 

 single feature vector, given an input image processed by the 

ackbone. First of all, consider an input image I ∈ R 

w 0 ×h 0 ×3 fed 

nto a backbone B = (d 1 , . . . , d n ) , consisting of n blocks of con-

olutional layers. An activation map, i.e., the output of any con- 

olutional block given I, is a 3-dimensional tensor (ignoring the 

atch dimension, for simplicity) X i ∈ R 

w i ×h i ×z i . The process of fea- 

ure aggregation consists of combining the outputs of different 

ctivation maps at different depths. To that end, we divide the 

ackbone into a fixed number of blocks according to different 

epths. This division is made to keep a fixed number of blocks for 

eature extraction, regardless of the total depth of the backbone 

rchitecture. 

.1. Pre-trained deep convolutional networks: backbone selection 

Most previous works on texture analysis consider pre-trained 

esNets [33] (18 or 50) as backbones. Here, we consider the out- 

ut of five blocks of layers according to the ResNet architecture, 

eaning that five activation maps are considered for feature aggre- 

ation. Additionally, we consider the ConvNeXt architecture [34] , a 

ore recent method with promising results in image recognition. 

or this backbone, we consider the activation maps from the four 

locks of layers according to the architecture described in the orig- 

nal work. More specifically, the following ConvNeXt configurations 

re used, with their corresponding number of channels ( z i ) of each 

lock: 

• ConvNeXt-nano 2 : z i = (80 , 160 , 320 , 640) ; 
• ConvNeXt-T: z i = (96 , 192 , 384 , 768) ; 
• ConvNeXt-B: z i = (128 , 256 , 512 , 1024) ; 
• ConvNeXt-L: z i = (192 , 384 , 768 , 1536) ; 
• ConvNeXt-XL: z = (256 , 512 , 1024 , 2048) . 
i 

2 This variant was not presented in the original paper but is available in the 

yTorch Image Models library [35] (version 0.6.7) https://github.com/huggingface/ 

ytorch-image-models/ 

X

w

f

3 
.2. Deep activation map preparation 

Given each deep activation map X i , we apply a depth-wise l p - 

ormalization ( p = 2 , i.e., Euclidean norm): 

 i (: , : , j) = 

X i (: , : , j) 

max (|| X i (: , : , j) || 2 ) , (2) 

here X i (: , : , j) represents the 2-dimensional activation map at 

ach channel j ∈ z i with spatial sizes (w i , h i ) . 

For feature aggregation, we propose to concatenate the activa- 

ion maps along the third dimension ( z i ). However, each map X i 
nitially has a different spatial dimension w i and h i . To overcome 

his, we simply resize all activation maps with bilinear interpola- 

ion using the spatial dimensions of X n 
2 

, (w n 
2 
, h n 

2 
) , as the target

izes. In other words, we consider the spatial dimensions at the 

iddle of the backbone as our anchor size, meaning that some ac- 

ivation maps will require upscaling (if i > 

n 
2 ) and others down- 

caling (if i < 

n 
2 ). Naturally, the information from activation maps 

t higher depths receives higher priority considering that upscaling 

reserves more information than downscaling. These assumptions 

onsider the most common structure of convolutional architectures 

here the spatial size decreases with layer depth. Nonetheless, the 

dea is to keep all activation maps with a fixed spatial dimen- 

ion. From now on, we will refer to spatial dimensions of all X i 
s w = w n 

2 
and h = h n 

2 
. For an input size of 224 × 224 , this results

n w = h = 28 for the backbones explored in this work. The con-

atenation of activation maps is then performed as 

 

′ = [ X 1 ; . . . ; X n ] ∈ R 

w ×h ×z → X 

′ ∈ R 

wh ×z , (3)

here [ . ; . ] denotes the concatenation along the third dimension, 

nd z = 

∑ 

i z i is the resulting number of channels after concatena- 

ion. Considering common convolutional architectures where z i < 

 i +1 , activation maps from higher depths have a higher influence 

n the overall z features. Additionally, the 2-dimensional activation 

ap at each channel z i is flattened, resulting in the reshaped 2D 

epresentation X ′ with sizes wh -by- z, which we refer to as an ag- 

regated activation map. These steps are illustrated in Fig. 1 , which 

eports the overall structure of the proposed method. 

.3. Pixel-wise randomized encoding 

The aggregated activation map of a single image is used to train 

n RAE considering each spatial point, or pixel (row of X ′ ), as a

ample and each channel (column of X ′ ) as a feature. In this sense, 

he method also works with arbitrary input sizes (if accepted by 

he backbone) since the spatial dimensions only affect the num- 

er of training samples for the RAE. Intuitively, larger input sizes 

ay improve the RAE training (see Fig. 3 (b)), but also increases the 

ackbone cost significantly. Moreover, considering that the spatial 

rganization of the pixels is lost due to the flattening procedure 

f X ′ , we add a positional encoding composed of sine and cosine 

unctions of different frequencies with dimension z extended for 2 

patial dimensions as in Wang and Liu [36] : 

PE (x, y, 2 i ) = sin ( x 
10 , 0 0 0 4 i/z ) , 

PE (x, y, 2 i + 1) = cos ( x 
10 , 0 0 0 4 i/z ) , 

PE (x, y, 2 j + z/ 2) = sin ( y 
10 , 0 0 0 4 j/z ) , 

PE (x, y, 2 j + 1 + z/ 2) = cos ( y 
10 , 0 0 0 4 j/z ) , 

here x ∈ w and y ∈ h , which is then added to the aggregated ac-

ivation map via element-wise sum: 

 

′ = X 

′ 
� P E. (4) 

The use of positional encoding is considered to evaluate 

hether or not adding spatial information to the aggregated deep 

eatures could improve texture discrimination. In the context of 

https://github.com/huggingface/pytorch-image-models/
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(b) Randomized Auto-
encoder (RAE).

Fig. 1. Illustration of the proposed RADAM architecture (a), given an input image to a final descriptor. The RAE is shown in detail (b), which is a simple 1-layer auto-encoder 

solved through least-squares, where we use the decoder weights as descriptors (summed for m RAEs). 
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ur method, we employ RAEs over these features to encode the 

ntire information in an orderless fashion since the RAE is trained 

sing each z-dimensional deep feature as a training sample. Ac- 

ording to the training algorithm of the RAE, the order of the sam- 

les does not matter, which differs from a typical SGD, for in- 

tance. Therefore, this process differs from both global pooling and 

he flattening of the features. The positional encoding is simply 

dding spatial information into the deep features about how they 

ere organized before in the 3D aggregated activation map, which 

s considered by the RAE when learning their representations. In 

ection 4 , we evaluate the impact of (not) using positional encod- 

ng. 

After summing the positional encoding to X ′ , the first step of 

he RAE is to project the inputs using a random fully-connected 

ayer with weights W k ∈ R 

z×q , followed by a sigmoid nonlinearity. 

he weights are generated using the LCG for simplicity and better 

eplicability, followed by standardization (zero centered, unity vari- 

nce) and orthogonalization [32] . These configurations were cho- 

en according to previous works [13,29] . As for the LCG param- 

ters, we use a = 75 , b = 74 , and c = 2 16 + 1 , starting with x = 0 ,

hich is a classical configuration according to the ZX81 computer 

rom 1981. Here k works like a seed for random sampling, denot- 

ng a starting index inside the LCG space generated with the given 

onfiguration. More details on LCG weights are given in the Sup- 

lementary Material, such as an ablation on the impacts of differ- 

nt LCG configurations. The forward pass of the encoder g k ∈ R 

wh ×q 

or all samples is then obtained as 

 k = φ(X 

′ W k ) , (5) 

nd the decoder weights f k ∈ R 

z×q are obtained as the least- 

quares solution described in Eq. (1) , changing the target Y to X ′ :

f k = X 

′ g T k (g k g 
T 
k ) 

−1 . (6) 

The main idea of employing an individual randomized neural 

etwork for each image is to use the output weights themselves 

s a representation. In the case of RAEs, the output layer has the 

ame dimension as the input layer. Therefore, a single hidden neu- 

on ( q = 1 ) is considered to maintain the dimensionality. In this 

ense, the resulting decoder weights are represented by 

f k = (ν1 , . . . , νz ) , (7) 

here νi represents the connection weight between the single hid- 

en neuron and the output i , corresponding to feature i ∈ z. 

A single-neuron RAE may be limited in encoding enough in- 

ormation contained in the deep activation maps. Therefore, we 

ropose an ensemble of models or, as recently introduced [37] , a 

odel “soup”, which is achieved by combining the weights of m 
4 
arallel models. Here, each model is an RAE with a different ran- 

om encoder (using a different LCG seed), and the combination is 

erformed by summing the decoder weights 

 m 

= ( 
m ∑ 

k =1 

f k (ν1 ) , . . . , 
m ∑ 

k =1 

f k (νz )) . (8) 

It is important to note that the encoders g k of each of the m

AEs have a different random weight initialization. This is achieved 

y creating an LCG sequence of size mz so that we have z weights 

or each of the m RAEs. The structure of the RAE is illustrated in

ig. 1 , and following the whole RADAM pipeline shown in Fig. 1 ,

 texture representation, or feature vector ϕ m 

, is obtained for the 

nput image. The code for all these steps is available in the Supple- 

entary Material and in our online repository 1 . The feature vec- 

ors ϕ m 

are then used to train a linear classifier for a given texture 

ecognition task (more details on the classifier can be consulted in 

ection 4.2.1 ). 

. Experiments and results 

.1. Setup 

Our model is implemented using PyTorch [38] (except for the 

lassification step), making it easier to couple RADAM with sev- 

ral methods implemented in this library. The classification step is 

erformed using Scikit-learn [39] (with standard hyperparameters 

nd no tuning). We measure our results by the average classifica- 

ion accuracy and corresponding standard deviation, when applica- 

le (depending on the dataset). For the backbones, we consider the 

yTorch Image Models library [35] (version 0.6.7), which contains 

everal pre-trained computer vision methods. In the Supplemen- 

ary Material, we present the main code for RADAM, and the com- 

lete implementation including scripts for experimentation can be 

onsulted in our GitHub repository. 1 

Seven texture datasets are used for evaluation purposes in 

his paper, of which the following two variants of the Outex 

ataset [40] were used for analyzing the RADAM method alone: 

• Outex10 : Composed of 4320 grayscale images in 24 different 

texture classes. The training split contains 480 images and the 

test split contains 3840 images. This dataset focuses on rotation 

invariance, so the images are rotated at 9 different angles; 
• Outex13 : This Outex suite holds 1360 RGB images divided into 

68 texture classes, and evaluates color texture recognition. It 

contains 680 images in the training split and 680 images in the 

test split. 

The following five datasets are used for comparisons with other 

ethods (some samples are shown in Fig. 2 ): 
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Fig. 2. Some samples from four datasets that are employed in this work for comparison with existing literature methods. We show two samples from each of three classes, 

for each dataset. GTOS-Mobile, though not depicted, shares substantial similarities with the GTOS dataset. 
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Table 1 

Ablations with positional encoding and different classifiers, using RADAM 

( m = 1 ) with different backbones. Results are measured by classification ac- 

curacy considering the single train/test split of Outex10, or the average and 

standard deviation for 10 repetitions with the RF and MLP classifiers. 

Encoding Backbone LDA SVM RF MLP 

none ResNet18 77.5 83.4 85.5 ±1.5 81.9 ±2.0 

positional ResNet18 79.5 84.7 87.3 ±0.5 82.7 ±2.1 

none ConvNeXt-nano 82.4 89.6 81.2 ±1.3 85.7 ±2.3 

positional ConvNeXt-nano 85.9 89.6 82.4 ±1.0 84.7 ±2.2 

none ResNet50 86.0 87.4 90.6 ±0.9 86.0 ±0.9 

positional ResNet50 87.4 87.4 87.8 ±0.9 84.5 ±1.3 

none ConvNeXt-T 87.8 91.1 82.6 ±1.1 86.7 ±1.4 

positional ConvNeXt-T 89.4 91.1 87.0 ±1.2 86.6 ±1.3 

p

f

s

g

c

• Describable Texture Dataset (DTD) [7] : Composed of 5640 images 

in 47 different texture classes, evaluated by the 10 provided 

splits for training, validation, and test; 
• Flickr Material Dataset (FMD) [41] : Holds 10 0 0 images repre- 

senting 10 material categories, and validation is done through 

10 repetitions of 10-fold cross-validation; 
• KTH-TIPS2-b [42] : Contains 4752 images of 11 different mate- 

rials. This dataset has a fixed set of 4 splits for 4-fold cross- 

validation; 
• Ground Terrain in Outdoor Scenes (GTOS) [21] : This dataset rep- 

resents 34,105 images divided into 40 outdoor ground materials 

classes. There is also a fixed set of 5 train/test splits; 
• GTOS-M (Mobile) [19] : Consists of 100,011 images captured from 

a mobile phone of 31 different outdoor ground materials, and 

contains a single train/test split. 

.2. Analysis of RADAM properties 

Our first experimental evaluation concerns aspects of the pro- 

osed RADAM method. In the Supplementary Material, we show 

n additional analysis of the impacts caused by different random 

eights (LCG configurations) and concluded that they are mini- 

al, corroborating previous works. In the following, we evaluate 

nd discuss other aspects of RADAM. 

.2.1. Positional encoding and different classifiers 

We evaluate two design choices for the RADAM pipeline, the 

se of positional encoding and the classifier. The method is com- 

ared with or without encoding under four different classifiers: 

• Linear Discriminant Analysis (LDA) [43] : using a least-squares 

solution with automatic shrinkage using the Ledoit–Wolf 

lemma; 
5

• Support Vector Machines (SVM) [44] : using a linear kernel with 

C = 1 ; 
• Random Forests (RF) [45] : using 100 trees, the Gini impurity, 

and the square of the number of features when looking for the 

best splits; 
• Multilayer Perceptron (MLP): composed of a hidden layer with 

100 neurons, a softmax output layer, ReLU activations, and 

trained using Adam with β equal to 0.9 or 0.999, a fixed learn- 

ing rate of 10 −3 , and 200 epochs. 

Since the evaluation of positional encoding concerns the spatial 

roperties of texture, we consider the Outex10 benchmark, which 

ocuses on rotation invariance. As the results in Table 1 demon- 

trate, positional encoding improves or maintains performance in 

eneral. On the other hand, SVM provides the best results in most 

ases while gaining less improvement from positional encoding. 
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(a) Soup size ablation. (b) Input size ablation.

Fig. 3. Impacts of changing the number of RAEs ( m ) in the proposed method, considering different backbones on the Outex13 dataset (a), and (b) the image input size on 

the DTD dataset (with m = 4 ). All other experiments in this paper consider m = 4 and input size 224 × 224. 
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Table 2 

Classification accuracy (linear SVM) when using image features obtained from the 

backbones with different pooling techniques and the proposed RADAM. GAP agg. 

concatenates features from each of the n feature blocks of the backbones (the same 

way we approach them with RADAM). 

Method Backbone DTD FMD 

GMP ResNet18 62.3 ±0.8 75.6 ±0.5 

GLpP ResNet18 63.7 ±1.1 77.0 ±0.6 

GAP ResNet18 64.1 ±1.1 77.1 ±0.7 

GAP agg. ResNet18 64.6 ±1.2 77.2 ±0.6 

RADAM ResNet18 68.1 ±1.0 77.7 ±0.5 

GMP ConvNeXt-nano 51.7 ±0.9 62.4 ±0.8 

GLpP ConvNeXt-nano 44.0 ±0.5 50.4 ±0.8 

GAP ConvNeXt-nano 61.9 ±1.0 73.8 ±0.9 

GAP agg. ConvNeXt-nano 71.7 ±0.6 84.4 ±0.4 

RADAM ConvNeXt-nano 74.9 ±0.7 87.1 ±0.4 

GMP ConvNeXt-B 59.5 ±1.2 77.0 ±0.8 

GLpP ConvNeXt-B 59.1 ±1.3 70.6 ±0.8 

GAP ConvNeXt-B 69.2 ±1.3 83.6 ±0.5 

GAP agg. ConvNeXt-B 73.5 ±1.0 86.7 ±0.5 

RADAM ConvNeXt-B 76.4 ±0.9 90.2 ±0.2 

GMP ConvNeXt-B in IN-21K 70.6 ±0.8 84.2 ±0.4 

GLpP ConvNeXt-B in IN-21K 69.7 ±0.9 72.0 ±0.6 

GAP ConvNeXt-B in IN-21K 79.2 ±0.6 91.9 ±0.4 

GAP agg. ConvNeXt-B in IN-21K 80.4 ±1.0 92.3 ±0.3 

RADAM ConvNeXt-B in IN-21K 82.8 ±0.9 94.0 ±0.2 

GAP ConvNeXt-T 66.0 ±1.0 79.0 ±0.4 

GAP agg. ConvNeXt-T 73.7 ±0.9 83.6 ±0.5 

RADAM ConvNeXt-T 77.0 ±0.7 88.7 ±0.4 

GAP ConvNeXt-T in IN-21K 78.4 ±0.7 91.4 ±0.3 

GAP agg. ConvNeXt-T in IN-21K 77.3 ±0.9 89.9 ±0.5 

RADAM ConvNeXt-T in IN-21K 81.4 ±0.7 93.0 ±0.3 

GAP ConvNeXt-L 70.9 ±0.9 84.6 ±0.4 

GAP agg. ConvNeXt-L 73.4 ±0.6 86.4 ±0.5 

RADAM ConvNeXt-L 77.4 ±1.1 89.3 ±0.3 

GAP ConvNeXt-L in IN-21K 80.4 ±0.9 92.2 ±0.4 

GAP agg. ConvNeXt-L in IN-21K 81.9 ±0.6 93.4 ±0.4 

RADAM ConvNeXt-L in IN-21K 84.0 ±1.0 95.2 ±0.4 

GAP ConvNeXt-XL in IN-21K 81.3 ±1.0 92.4 ±0.3 

GAP agg. ConvNeXt-XL in IN-21K 82.0 ±1.1 93.9 ±0.4 

RADAM ConvNeXt-XL in IN-21K 83.7 ±0.9 95.2 ±0.3 
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evertheless, we keep the positional encoding in our architecture 

ince the additional cost is negligible compared to the potential 

ains. The SVM is also used as the classifier for all the following 

xperiments. 

.2.2. Soup size 

The only free parameter of the proposed RADAM method is the 

umber of RAEs to be combined, i.e., m . We evaluated m ranging

rom 1 to 32 and the results are shown in Fig. 3 (a) for different

ackbones in the Outex13 dataset. We observe significant gains for 

 from 1 to 4, while for larger values performance tends to sta- 

ilize. These results indicate that 4 ≤ m ≤ 8 is a good approach for 

 balance between performance and cost since no significant gains 

re achieved above that. All the following experiments in this pa- 

er are performed using m = 4 . 

The effects observed when increasing m are expected con- 

idering what is usually seen in model ensembles, or “model 

oups” [37] , where the combination of models trained separately 

ay be beneficial. On the other hand, our encoders are random, 

nd each one has different weights. However, even if each encoder 

reates a different random projection of the input, the decoders 

earn to transform the projection back to the same feature space. 

n other words, the RAEs learn different encoding-decoding func- 

ions for the same input that, when combined, provide a better 

epresentation in our feature extraction use case. 

.3. Comparison with other pooling techniques 

To show the gains of RADAM over other pooling approaches, 

e performed additional experiments using Global Average Pooling 

GAP), Global Max Pooling (GMP), and Global L-p Pooling (GLpP, 

.k.a. power-average pooling, and we use p = 2 ). These techniques 

re applied over pre-trained backbones to obtain a feature vector, 

iven input images, which are then used to train an SVM using 

he same configurations considered for RADAM. The obtained re- 

ults are shown in Table 2 for four backbones and two challeng- 

ng texture recognition datasets (DTD and FMD). We indicate the 

re-training dataset used for the backbone using “in”, e.g.in IN- 

1K (ImageNet-21K [46] ), and ImageNet-1K was used when not 

tated. In summary, GAP is superior to the other pooling tech- 

iques in all cases. On the other hand, RADAM achieves consid- 

rably superior results compared to GAP, with gains above 10% 

n absolute classification accuracy in some cases. We also evalu- 

te the impact of changing the input sizes when using RADAM or 

AP with ResNet50 or ConvNeXt-T, and the results are shown in 

ig. 3 (b) for DTD. We observe that increasing the input size usu- 

lly improves performance, except for RADAM with ResNet50 with 

nput size 512. Nevertheless, we keep the input size for the fol- 

owing experiments at 224 to maintain the fairness of comparison 

ith other methods from the literature. These results corroborate 

he effectiveness and scaling potential of RADAM for texture fea- 
6

ure extraction compared to other pooling techniques, especially 

hen considering ConvNeXt backbones. 

Additionally, we evaluate GAP agg., which aggregates the GAP 

rom each of the n feature blocks and returns an image represen- 

ation with z features (as RADAM). The results are also shown in 

able 2 , where it is possible to observe that RADAM surpasses GAP 

gg. by a considerable margin, in all backbones and datasets. GAP 

gg. usually improves over the standard GAP, which is to be ex- 

ected since more features are being added. However, the standard 

AP sometimes performs better than this simple aggregation by 
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Table 3 

Classification accuracy of different methods on texture benchmarks. The used backbones are separated into row 

blocks according to their computational budget, the input size is indicated in parentheses (224 × 224 was used 

when not stated), and the two best results in each block are highlighted in bold type . Methods indicated by a 

† symbol mean that we are citing the results from their papers. Results in blue show the previously published 

state-of-the-art on each dataset (some are given in Table 4 ), and red represents our results matching or above 

that. 
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oncatenation. These results suggest that better aggregation tech- 

iques are needed for improving texture feature extraction. In this 

ense, the proposed RADAM shows again interesting gains, result- 

ng in state-of-the-art performance on all benchmarks we consid- 

red, as we discuss in the following section. 

.4. Comparison with the state-of-the-art 

Finally, we compare RADAM with several state-of-the-art meth- 

ds on five challenging texture recognition datasets. Table 3 shows 

he results of methods using the ResNet18 and 50 and ConvNeXt- 

ano and T backbones. The table is organized into separate rows 

ccording to the computational budget of the backbones. The 

rst comparison section contains methods using ResNet18 and 

onvNeXt-nano since they have a similar computational budget. 

n this scenario, RADAM achieves competitive performance on KTH 

hen using ResNet18 but is less effective on other datasets. Nev- 

rtheless, it is worth noting that RADAM with ResNet18 surpasses 

AP in all cases and does not require fine-tuning, offering a much 

heaper and simple alternative to other methods that require fine- 

uning. Using ConvNeXt-nano, RADAM significantly outperforms 

AP and achieves the best results on all datasets except GTOS and 

TOS-M, and at a similar inference budget to using ResNet18. 

Considering the results within the ResNet50 budget, RADAM 

erforms much better compared to ResNet18. Competitive results 

re achieved on DTD and FMD, and also the best results on KTH. 

e observe again that on GTOS, although surpassing GAP, RADAM 

erforms below the compared methods that perform fine-tuning. 

hese results are expected since both GTOS datasets are by far the 

iggest datasets among the ones considered, which allows better 

ne-tuning of the millions of parameters of the backbones. How- 

ver, this procedure means that a considerable computational load 

s necessary to train these methods relying on fine-tuning. On the 

ther hand, by using ConvNeXt-T, RADAM surpasses GAP by a sig- 

ificant margin and offers a competitive performance on GTOS 

ompared to the fine-tuning-based methods. It also achieves the 

econd-best result on DTD and the best results on FMD and KTH. 

he performance on FMD also surpasses the previous state-of-the- 

rt considering all results available in the literature (which con- 

iders more complex backbones, see Table 4 ). In general, we no- 
7 
ice that in most cases, the GAP of ConvNeXt performed below the 

AP of their corresponding ResNets (in terms of cost according to 

he blocks of the table). In contrast, RADAM achieves considerably 

etter results when coupled with ConvNeXts. Therefore, the results 

learly emphasize the gains of RADAM over the potential difference 

etween different backbones. 

Table 4 concerns methods with an increased cost or improved 

re-training, in contrast to those compared before. Here we include 

ADAM using ConvNeXt-T, B, L, and XL, with ImageNet-1k or 21k 

re-training, against several works including very recent methods, 

uch as ViTs. In the first block, RADAM outperforms GAP in all 

ases, and also the other compared methods on FMD, KTH, and 

TOS. On DTD and GTOS-M, RADAM achieves the second-best re- 

ult when using ConvNeXt-L. The results obtained on FMD using 

oth ConvNeXt-B and L backbones surpasses the previously pub- 

ished state-of-the-art on this dataset. 

The second block highlights the benefits of employing bet- 

er pre-training. For instance, ConvNeXts T, B, L, and XL surpass 

he previously published state-of-the-art on FMD by using GAP. 

onvNeXt-XL also achieves this for KTH and GTOS-M. Neverthe- 

ess, this is not enough to surpass previous methods on DTD or 

TOS. On the other hand, RADAM is able to overcome the pre- 

iously published state-of-the-art in all benchmarks. It consis- 

ently outperforms GAP, and also all other methods across every 

enchmark when using the ConvNeXt-XL backbone, establishing 

 new state-of-the-art. When using ConvNeXt-B, it also surpasses 

he previous state-of-the-art in all cases except for DTD. Using 

onvNeXt-T, it overcomes the state-of-the-art on FMD and offers 

ompetitive performance on the other benchmarks while having a 

ower inference cost, considering the size of this backbone. With 

onvNeXt-L, RADAM also establishes a new state-of-the-art on 

TD. 

In conclusion, these results underline the effectiveness of 

ADAM as a robust method for texture feature extraction fol- 

owed by a linear SVM classification. Its performance, particularly 

hen using ConvNeXt backbones, offers high-level texture dis- 

rimination without the need for fine-tuning, which saves con- 

iderable resources in training time, as we better discuss in the 

ollowing. 
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Table 4 

Classification accuracy of methods employing more complex backbones and pre-trainings. The first block represents methods with Im- 

ageNet1k pre-training only, and the second block includes different pre-trainings with bigger datasets. Results in show the previously 

published state-of-the-art on each dataset (some are given in Table 3 ), represents the results matching or above that, and the two best 

results in each block are highlighted in bold type . 
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.5. Challenging texture instances 

This section discusses the cases with the highest error rates 

or the two most challenging datasets (DTD and GTOS). We com- 

are the performance of RADAM and GAP in ConvNeXt backbones, 

howing the confusion matrix (classes are sorted alphabetically), 

nd the precision and recall metrics (averaged for all classes). The 

esults for the DTD dataset are shown in Fig. 4 , along with ex- 

mples from the most challenging classes. In this case, RADAM 

chieves the best performance using ConvNeXt-L, while GAP needs 

he bigger version, ConvNeXt-XL (both pre-trained on IN-21k), to 

chieve the best classification accuracy. In terms of precision and 

ecall, RADAM also achieves the best results (0.84 against 0.81). Re- 

arding the misclassification, it is possible to notice that the class 

blotchy” is the most challenging for both methods. The exam- 

les in Fig. 4 (c) show how complex this class is, where the in-

tances contain various types of objects and materials. The results 

ndicate that the methods struggle to model the “blotchy” con- 

ept, which is more intuitive for humans to understand. GAP with 

onvNeXt-XL achieves 50.8% classification accuracy for this class, 

hile RADAM with ConvNeXt-L achieves 54.3%. While this is the 

lass with the lowest accuracy rate, the misclassifications (confu- 

ion) are spread across various classes, with the most common one 

eing “smeared”. For this class, GAP achieves a 70.8% overall accu- 

acy rate, and RADAM achieves 75.5%. For GAP and RADAM, 10% 

f the samples are misclassified as smeared, and the percentage of 

meared samples that are misclassified as blotchy are 14.3% and 

2%, respectively. In general, RADAM improved the classification of 

hese classes and reduced the misclassification rates. 

The classes of DTD with the highest confusion rate are “dot- 

ed” and “polka-dotted”. Their similarity is noticeable, as the ex- 

mples in Fig. 4 (d and e) show, and the models struggle to differ-

ntiate the distribution of bubbles with uniform or varied sizes. 

evertheless, RADAM consistently improves the overall accuracy 

ate of both classes. For the class “dotted”, GAP has a 71.3% ac- 

uracy rate while RADAM achieves 75.8%. For “polka-dotted”, the 

ates are 73.3% and 82.5% for GAP and RADAM, respectively. While 

heir overall accuracy rate is relatively high, the misclassifications 

re concentrated between them. GAP has a 20.3% misclassification 

ate of “dotted” samples as “polka-dotted”, and 20.8% for the other 
8 
ay around. In this case, RADAM also improves the performance, 

howing a reduction to 17.8% misclassification rate of “dotted” as 

polka-dotted”, and 12.8% for the opposite case. 

The results for GTOS are shown in Fig. 5 for GAP and RADAM 

sing ConvNeXt-XL. The most challenging texture classes in this 

ataset in terms of overall accuracy, for both methods, are “rust 

over” and “mud puddle”. For the former, GAP achieves a 50.7% 

lassification accuracy, and 34.7% of the samples are misclassi- 

ed as “aluminum”. RADAM shows a slightly inferior performance, 

ith a 48.6% accuracy rate and 41.1% misclassification rate as “alu- 

inum”. As Fig. 5 (c and d) shows, the images from these classes 

ay contain similar elements such as rusty parts in the aluminum 

ieces, and the background grids, which proved to be a challenge 

or the methods. On the other hand, RADAM shows the best preci- 

ion and recall for this dataset, and also improves the performance 

or other classes. For the “mud puddle” class, GAP correctly identi- 

es 48% of the samples, while RADAM achieves 52.9%. 

The classes “asphalt stone” and “stone asphalt” from GTOS also 

resent a high confusion rate, as they are particularly similar (see 

ig. 5 (e and f). GAP correctly predicts 79.2% of the samples from 

he “asphalt stone” class, while RADAM improves the accuracy to 

2.3%. For “stone asphalt”, the classification accuracy is 52% and 

3.9% for GAP and RADAM, respectively. As for the confusion cases, 

6% of the “stone asphalt” samples are misclassified as “asphalt 

tone” by GAP, while RADAM reduces the error to 45.4%. 

.6. Feature extraction cost versus performance 

Additional analysis is performed to better understand the bal- 

nce between the classification performance and computational 

udget of the compared texture recognition methods. We consider 

he inference costs in terms of GFLOPs and the number of param- 

ters according to the backbone used by each method since this 

s the most resource-demanding step of every pipeline. One im- 

ortant aspect here is that the input size greatly impacts the FLOP 

ount of the methods (check input sizes in parentheses in Table 3 ). 

ost works consider 224 × 224 inputs (the same input size em- 

loyed by RADAM), and we assume this same size when not stated 

y the authors. For this analysis, we also are not considering the 

reparation of the backbone either in terms of pre-training cost or 
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Fig. 4. Confusion matrix and image samples from the most challenging classes of the DTD benchmark. The confusion matrix is normalized by the total number of samples 

per class after the cross-validation iterations. 

Fig. 5. Confusion matrix and image samples from the most challenging classes of the GTOS benchmark. The confusion matrix is normalized by the total number of samples 

per class after the cross-validation iterations. 

9 
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Fig. 6. Computational budget at inference time according to the backbone used by different methods. The symbol � represents when stronger pre-training was used (with 

datasets bigger than ImageNet-1k). 
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hosen dataset or the fine-tuning of the methods that do so. In this 

ense, we show in Table 5 the approximate inference costs of the 

ifferent backbones em ployed by the methods that are explored in 

his work, including the proposed RADAM. 

We evaluate the relationship between the cost and performance 

f the methods according to the backbones they employ, and 

he results are shown in Fig. 6 for all the datasets. For RADAM, 

e consider the backbones ResNet18, ConvNeXt-nano, ResNet50, 

onvNeXt-T, ConvNeXt-B, and ConvNeXt-L (in this order according 

o the x -axis of the plots). It is possible to notice the superiority 

f RADAM at different budgets on DTD, FMD, and KTH. Moreover, 

he performance scales with backbone complexity and better pre- 

raining (DTD). 

Multilayer-FV achieved the previous state-of-the-art on FMD us- 

ng EfficientNet-B5 with an input size of 512 pixels, which yields 

n approximate inference cost of 12 GFLOPs. This is consider- 

bly higher than the cost of ConvNeXt-T (4.5 GFLOPs), with which 

ADAM achieves an improvement of 4.3 % in absolute performance 

ompared to Multilayer-FV. On KTH, RankGP-3M-CNN++ achieves 
10 
1.1 % accuracy (previous state-of-the-art) using three backbones, 

ith a total inference cost of around 30 GFLOPs, while RADAM 

ith ConvNeXt-T achieves comparable results ( −0 . 1% ), and also 

chieves the state-of-the-art results using ConvNeXt-B (91.8 % with 

t 15 GFLOPs), and ConvNeXt-XL (94.4 % at 61 GFLOPs). Consider- 

ng GTOS and GTOS-M, competitive cost and performance are also 

chieved with RADAM using ConvNeXt-T. 

To increment the cost analysis, we show in Table 6 the practi- 

al running time of RADAM (with m = 4 and SVM) in contrast to 

he costs of ResNet and other pooling techniques (GAP, GMP, and 

LpP). Our intuition is to compare RADAM to different f eature ex- 

raction techniques, and to the approach in previous works of fine- 

uning the backbone. We measure the average time (in millisec- 

nds) of 100 runs of ResNet18 and ResNet50 over one 224 × 224 

GB image considering the RADAM module or pooling techniques, 

he ResNet forward and backward passes, and the corresponding 

imes when fine-tuning the backbone or using feature extraction 

ith SVM for inference. It is important to notice that the cost 

f RADAM varies according to the backbone since the number of 
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Table 5 

Computational budget of different backbones employed by texture recognition 

methods explored in this work. 

Backbone Input size GFLOPs Parameters (millions) 

ResNet18 224 × 224 1.8 11.2 

ConvNeXt-nano 224 × 224 2.4 14.9 

ResNet50 224 × 224 4.1 23.5 

ConvNeXt-T 224 × 224 4.5 27.8 

ResNet18 352 × 352 4.5 11.2 

DenseNet161 224 × 224 7.8 26.5 

ResNet50 352 × 352 10.2 23.5 

EfficientNet-B5 512 × 512 12.3 28.3 

ConvNeXt-B 224 × 224 15.4 87.6 

ConvNeXt-L 224 × 224 34.4 196.2 

ViT-B/16 224 × 224 49.4 86.1 

ConvNeXt-XL 224 × 224 60.9 348.1 

ViT-L/14 336 × 336 125.0 304.3 

ViT-L/16 384 × 384 174.8 304.7 

Table 6 

Average running time (in milliseconds) of 100 repetitions using a 224 × 224 RGB 

image, performed on a machine with a GTX 1080ti, Intel Core i7-7820X 3.60 GHz 

processor (using 8 threads), and 64 GB of RAM. 

Time (ms) 

Method Backbone CPU GPU 

backbone’s forward pass ResNet18 15.0 ±1 . 6 4.3 ±0 . 1 

backbone’s backward pass ResNet18 50.8 ±5 . 3 9.9 ±1 . 5 

backbone’s 1 fine-tuning epoch ResNet18 65.8 ±6 . 0 14.2 ±1 . 6 

GAP ResNet18 0.4 ±0 . 03 0.2 ±0 . 01 

GMP ResNet18 0.4 ±0 . 02 0.2 ±0 . 01 

GLpP ResNet18 0.3 ±0 . 02 0.2 ±0 . 02 

RADAM ResNet18 2.7 ±0 . 2 2.9 ±0 . 04 

backbone + GAP + SVM inference ResNet18 15.9 ±2 . 1 6.8 ±0 . 2 

backbone + GMP + SVM inference ResNet18 16.4 ±1 . 8 10.5 ±0 . 2 

backbone + GLpP + SVM inference ResNet18 15.6 ±1 . 7 6.6 ±4 . 1 

backbone + RADAM + SVM inference ResNet18 19.8 ±1 . 6 8.1 ±0 . 1 

backbone’s forward pass ResNet50 34.0 ±2 . 6 11.1 ±0 . 8 

backbone’s backward pass ResNet50 107.6 ±5 . 9 21.5 ±2 . 2 

backbone’s 1 fine-tuning epoch ResNet50 141.7 ±7 . 6 32.6 ±2 . 3 

GAP ResNet50 0.6 ±0 . 02 0.2 ±0 . 01 

GMP ResNet50 0.8 ±0 . 1 0.2 ±0 . 01 

GLpP ResNet50 0.4 ±0 . 03 0.2 ±0 . 02 

RADAM ResNet50 7.0 ±0 . 4 5.2 ±0 . 4 

backbone + GAP + SVM inference ResNet50 35.8 ±3 . 9 15.2 ±0 . 4 

backbone + GMP + SVM inference ResNet50 35.4 ±3 . 0 19.5 ±1 . 3 

backbone + GLpP + SVM inference ResNet50 33.5 ±2 . 9 13.6 ±0 . 9 

backbone + RADAM + SVM inference ResNet50 50.3 ±2 . 6 18.1 ±0 . 8 
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ggregate features ( z) changes, thus impacting the RAE training 

ost. 

Considering the results in Table 6 , fine-tuning ResNet50 on 

TOS-M using only 10 epochs with a batch size of 1 would take 

round 40 h on CPU or 9 h on GPU. On the other hand, extract-

ng features with RADAM followed by SVM inference on the whole 

TOS-M dataset takes around 1.3 h on CPU or half an hour on GPU. 

he training of SVM on the whole dataset (on CPU) takes an ad- 

itional 15 min on average, without hyperparameter tuning. The 

esults demonstrate that the RADAM is considerably faster than 

he ResNet backbone in terms of training/fine-tuning. Although the 

ADAM module alone is usually slower than other pooling tech- 

iques, which is to be expected since they perform simpler opera- 

ions, the differences are negligible when considering the full infer- 

nce pipeline with SVM. Moreover, RADAM provides considerably 

etter performance than these pooling techniques (see Table 2 ). 

hese results extend to ConvNeXt-nano and ConvNeXt-T, consid- 

ring that the cost is comparable to ResNet18 and ResNet50, re- 

pectively. In summary, these findings corroborate our claims that 
11 
ADAM provides both considerable savings in training time (com- 

ared to fine-tuning) while achieving SOTA results at similar infer- 

nce costs. 

. Conclusion 

We presented RADAM, a new feature encoding module for tex- 

ure analysis. The method consists of randomly encoding aggre- 

ated deep activation maps from pre-trained DCNN using RAEs. 

hese autoencoders learn to pool activation maps into a 1- 

imensional representation by training on its z-dimentional pix- 

ls as sample points. A texture image is then encoded by using 

he decoder weights learned from its activation maps. The pro- 

edure is orderless but takes into account the spatial informa- 

ion of the pixels by using a 2D positional encoding. Compared 

o previous works, our method does not require fine-tuning of 

he backbone, and the encoding module is rather simple. Linear 

lassification of the descriptors is performed with an SVM, and 

e achieve state-of-the-art performance on several texture bench- 

arks. RADAM also achieves the best efficiency considering infer- 

nce cost and performance using backbones with varying com- 

utational budgets. These results are impressive also considering 

hat, compared to other methods, no fine-tuning of the back- 

one is needed for RADAM, causing a lower cost also at training 

ime. 

Our work corroborates a simpler approach to texture recogni- 

ion where the fine-tuning of costly backbones may not be neces- 

ary to achieve high discriminatory power. For future works, one 

ay explore different backbones or different formulations of our 

AE, with multiple layers, more hidden neurons, and other pos- 

ible improvements. On the other hand, if enough computing re- 

ources are available, another approach more similar to previous 

orks would be to explore our module in an end-to-end manner. 

ince RADAM is deterministic and a closed-form solution, an al- 

ernative would be adding a linear layer instead of an SVM and 

ptimizing it along with the backbone. 
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