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A B S T R A C T   

The diagnosis of cancer and other diseases using data from non-specific sensors – such as the electronic tongues 
(e-tongues) - is challenging owing to the lack of selectivity, in addition to the variability of biological samples. In 
this study, we demonstrate that impedance data obtained with an e-tongue in saliva samples can be used to 
diagnose cancer in the mouth. Data taken with a single-response microfluidic e-tongue applied to the saliva of 27 
individuals were treated with multidimensional projection techniques and non-supervised and supervised ma
chine learning algorithms. The distinction between healthy individuals and patients with cancer on the floor of 
mouth or oral cavity could only be made with supervised learning. Accuracy above 80% was obtained for the 
binary classification (YES or NO for cancer) using a Support Vector Machine (SVM) with radial basis function 
kernel and Random Forest. In the classification considering the type of cancer, the accuracy dropped to ca. 70%. 
The accuracy tended to increase when clinical information such as alcohol consumption was used in conjunction 
with the e-tongue data. With the random forest algorithm, the rules to explain the diagnosis could be identified 
using the concept of Multidimensional Calibration Space. Since the training of the machine learning algorithms is 
believed to be more efficient when the data of a larger number of patients are employed, the approach presented 
here is promising for computer-assisted diagnosis.   

1. Introduction 

There have been considerable efforts to develop biosensors for early 
diagnosis of cancer [1–5] and other diseases [6–10], especially for 
screening at low cost with portable instruments, including for 
point-of-care diagnosis [11–15]. These biosensors may operate with 
various principles of detection, e.g., with electrical, optical, electro
chemical methods (for a review see Ref. [16]) and are targeted at 

detecting specific biomarkers. For cancer, in particular, immunosensors 
and genosensors [17–24] have been reported where the biomarkers for 
diagnosis may be antigens (or antibodies) and genetic material (DNA, 
RNA), respectively. High sensitivity and selectivity can be achieved 
owing to the specificity in antibody-antigen interactions and hybridi
zation involving DNA or RNA probes [25–27]. However, limitations 
related to the biorecognition element have impaired the commercial 
translation of biosensors into real-world point-of-care diagnostics [28, 
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29]. Proteins denature due to their poor stability, and the production 
using heterologous cell expressions is complex and costly. Alternatively, 
receptor-mimicking peptides identified from structural analyses and 
computational modeling have garnered interest in developing the 
next-generation biosensors by overperforming whole proteins in terms 
of stability and resistance to harsh environments. These peptides can be 
easily and inexpensively produced by chemical synthesis. Nevertheless, 
their deployment to mimic binding pockets of natural receptors to bind 
to targets in complex fluids remains challenging [28–30]. These diffi
culties have sparked research into bioreceptor-free sensing platforms for 
point-of-care settings [31]. Also relevant for experiments with biological 
samples with intrinsic high variability, as in blood, urine and saliva, is to 
treat the data with statistical and computational methods [32–35]. Of 
special relevance in recent years has been the use of information visu
alization [36,37] and machine learning [38–41] techniques. With such 
methods, one may enhance the accuracy of diagnosis by combining the 
high specificity in the response of biosensors with pattern recognition 
strategies [42]. Examples of these applications can be found in the 
diagnosis of breast cancer based on impedance spectra analysis of a 
microfluidic chip [31], and for prostate cancer where image analysis of 
biosensing units was carried out with supervised machine learning [43]. 

The utilization of pattern recognition and machine learning for 
diagnosis is well established in some areas, which include radiology 
image analysis [44–48] and genomics [49–52]. This may serve as 
inspiration for similar applications with sensors and biosensors, for 
example with electronic tongues (e-tongues) [53–56] and electronic 
noses (e-noses) [57,58]. E-tongues and e-noses are generally made of 
sensor arrays that do not detect specific analytes but are rather based on 
the global selectivity concept [59]. Within this concept, the electrical 
responses from a few sensing units are combined via statistical methods 
to establish “fingerprints” of liquids and gases or vapors. The main 
challenge to using these devices and pattern recognition concepts for 
diagnosis with biological samples lies in the limited amount of data 
available to establish unequivocal patterns. Though the sensing data 
obtained with e-tongues and e-noses certainly have considerable vol
ume, requiring statistical methods beyond a manual analysis, they are 
normally insufficient for a fully-fledged training procedure in supervised 
machine learning. One has therefore to be cautious in applying machine 
learning to avoid overfitting [60,61] and data leakage [62] and combine 
sensing data with other types of information that may be useful for 
diagnosis, if at all possible. 

In this paper, we report on the use of an e-tongue based on imped
ance spectroscopy to detect oral cavity cancer, which belongs to the 
head and neck cancers group, with saliva samples from diagnosed pa
tients. The choice of this type of cancer was motivated by the difficulties 
in their diagnosis, especially at early stages. The first approach to 
identify oral cancer remains the conventional oral examination, which 
consists of a white light visual examination and palpation of the oral 
cavity surfaces as well as the external facial and neck regions [63]. But 
this only happens when the disease is already at an advanced stage. The 
material extracted from the patient is further submitted to biopsy and 
histopathological examination, the gold standard in the diagnosis of oral 
cancer. For complex scenarios, the clinical cases are evaluated by 
multidisciplinary workstations (surgeons, clinical oncologists, radiolo
gists, etc.). However, such methods are invasive and traumatic for pa
tients. Alternative exams have been exploited (exfoliative cytology and 
Polymerase Chain Reaction (PCR)), but they lack sensitivity and are 
expensive [64]. Complementary studies using spectroscopy [65] and 
electrochemical [66] techniques to develop noninvasive and painless 
methods for oral cancer diagnosis would encourage routine screening 
tests and increase the chances of early detection. In the literature, there 
are a few examples of electronic tongues applied for prostate and 
bladder cancer screening [67–71] with a non-invasive methodology. 
Urine samples were analyzed by potentiometric and voltammetric 
techniques, in which chemometric and machine learning tools made the 
distinguishing task possible. In our study we used saliva from 27 patients 

(individuals diagnosed with cancer) and healthy volunteers (without 
any disease). Though this number is small, thus generating a limited 
amount of data, we were able to obtain a reasonable accuracy in diag
nosis with supervised machine learning, especially upon combining 
impedance data and patient clinical information. Because different types 
of information were used, we employed the concept of multidimensional 
calibration space (MCS) [72] to generate the rules that explain the 
diagnosis results. It is also significant that multidimensional projection 
techniques and clustering methods with non-supervised machine 
learning were unable to provide an accurate diagnosis. 

2. Experimental 

Collection of saliva from patients and clinical data. Saliva sam
ples were collected from patients at the Barretos Cancer Hospital (SP - 
Brazil; ethics committee approval #468/2011). The collection was made 
after vigorous mouth washing with 10 mL NaCl (0.9%) aqueous solution 
during 1–2 min. The patient then spitted the saliva into a 50 mL Falcon 
tube, which was then centrifuged at 1500 rpm for 10 min at 4 ◦C. The 
supernatant was discarded, and the pellet was resuspended with residual 
leftover supernatant. This new suspension was poured into a 1.5 mL 
Eppendorf, which was centrifuged at 1500 rpm for 10 min at 4 ◦C. The 
supernatant was discarded, and the resulting pellet was stored at − 80 ◦C 
for further analysis. At the moment of the measurements in the imped
ance analyzer, each pellet was resuspended in a 200 μL phosphate- 
buffered solution (PBS, Sigma-Aldrich). The demographic characteris
tics of patients are summarized in Table S1. 

Measurements with the electronic tongue. The e-tongue used in 
this work is similar to that reported in Ref. [73] with a single response 
microfluidic device [74–76]. In short, a single piece of PDMS containing 
four pairs of 304 stainless steel microwires (Treficap, Sao Paulo, Brazil), 
with a diameter of 700 μm, modified with 800 nm of SiO2, NiO2, Al2O3, 
and Fe2O3 oxide films, using a UNIVEX 300 electron beam (Oerlikon 
Leybold Vacuum, Cologne, Germany). The sensing units were 
short-circuited establishing an array of capacitors connected in parallel, 
whose distance between the electrodes (EA and EB) is the diameter of the 
microwire used as a template for the microfluidic channel. Scheme 1 
depicts the microfluidic electronic tongue device used in this work, here 
the sample is injected by a syringe that passes between the electrodes 
above (EA) and below (EB) the microchannel, as represented in the 
enlarged image. Electrical impedance spectroscopy experiments were 
performed using an impedance analyzer model 1260 A coupled to a 
dielectric interface model 1296 A (Solartron Analytical, Leicester, En
gland), applying 25 mV ac voltage in the frequency range of 1 Hz to 1 
MHz (19 frequencies). Moreover, the experiments were performed 
under a flow rate of 1000 μL h− 1 using a syringe pump (New Era Pump 
Systems Inc., NE-1000, Farmingdale, NY) and a 1 mL plastic syringe. The 
method used around 500 μL of sample solution to execute the entire 
measurements. To avoid cross-contamination among samples, after each 
measurement a washing step was performed three times by injecting 1 
mL of ultrapure water. 

2.1. Data analysis 

Dataset. The impedance spectroscopy data obtained with the e- 
tongue were analyzed with various methods from the areas of data 
visualization and machine learning. The raw data consists of 162 
capacitance spectra (here just spectra) with samples from 27 individuals 
(6 measurements per sample), which were labeled as YES (either floor of 
mouth or other oral cavity tumor subsites) and NO (no tumor) based on 
prior clinical and pathological diagnoses at Barretos Cancer Hospital. In 
order to prevent some level of leakage because of the repetition in the 
spectra acquisition, the spectra of each patient were aggregated through 
the average, and Table 1 shows the size of the dataset used in all 
analyses. 

Each sample data is composed of 23 features of which 19 come from 
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the spectra and 4 are related to clinical information. The spectra features 
are capacitances measured over frequencies ranging from 1 Hz to 1 
MHz. The clinical features are smoking (yes, no, former), alcoholism 
(yes, no, former), gender (male, female), and age (37–78), as given in 
Table 2. The ages histograms can be seen in Figures S1A through S1C in 
the Support Information. The dataset is balanced for the label cancer 
(YES or NO) but unbalanced for the label sample case. For the class ‘floor 
of mouth,’ there are no samples of patients with no smoking, yes/no 
alcoholism, and female gender. 

Data Visualization. Dimensionality reduction and projection 
methods common in the literature were tried to visualize the intrinsic 
capacity of the spectra features (only-sensor) to exhibit the known group 
patterns structures (binary and multiclass). The methods used were 
Principal Component Analysis (PCA) [77], Neighborhood Components 
Analysis (NCA) [78], t-distributed Stochastic Neighbor Embedding 
(TSNE) [79], and Interactive Document Mapping (IDMAP) [80]. 

Machine learning. Clustering and classification machine learning 
algorithms were employed for the data group discrimination. In order to 
verify the influence of the clinical features, the analysis was accom
plished with spectra features (only-sensor) and with the aggregation of 
clinical data (all-features). The clustering algorithms used were K-Means 
(KM) [80], Hierarchical Agglomerative Clustering (HAC) [80], and 
Spectral Clustering (SC) [81] with default hyperparameters in 
Scikit-learn module [82]. The metric used to evaluate the performance 
was the Average Silhouette Width (ASW) [83], which varies between − 1 
and +1. The closer to +1 the higher quality the clustering has. Each 
clustering analysis was repeated 100 times, and then the average value 
and the standard deviation of the AWS were obtained. The classification 
was performed with the following algorithms: Logistic Regression (LR), 

Linear Discriminant Analysis (LDA), K-Nearest Neighbor (KNN), Naive 
Bayes (NB), and Support Vector Machine with kernels: linear (SVML), 
polynomial (SVMP) and radial basis function (SVMR) [80]. Also applied 
was the Random Forest (RF) [84] algorithm as an ensemble method. To 
improve the performance avoiding overoptimistic bias and overfitting, 
the hyperparameters were tuned and the best model was evaluated with 
Nested K-Fold Cross-Validation [60,85,86] protocol, which provides 
average performance (e.g., accuracy) as an estimation of how the clas
sification model will perform on new data instances (not available to the 
algorithm yet). This approach has been useful when few data instances 
(samples) are available [85]. It is preferable to a single K-Fold 
Cross-Validation [87], being a robust [88] and overzealous [89] per
formance estimation method. On the Nested K-Fold Cross-Validation, 
two K-Fold Cross-Validation procedures are enclosed. The inner K-Fold 
Cross-Validation loop is performed for model selection (tuning the 
model hyperparameters) [90], whereas model performance is carried 
out by the outer K-Fold Cross-Validation loop [85,86]. Here, there are 
the kouter and kinner configuration parameters for the outer (evalua
tion) and inner (tunning) loops respectively. Optimistic (over
estimation) and biased performance can be an issue especially on small 
datasets [85,86], which might be avoided following the Nested K-Fold 
Cross-Validation procedure [85,86]. Nevertheless, more samples will 
produce a better and more reliable calibration. 

3. Results and discussion 

Data Visualization and clustering with non-supervised machine 
learning. Fig. 1A and B shows the 162 capacitance spectra for all 
samples, where different colors are used to distinguish the prevalence of 
cancer and type of cancer. Two important observations can be made 
from a visual inspection of these figures: it is hard to distinguish the 
samples by solely inspecting the spectra, and the dataset appears to 
contain two separate sets of measurements. We found that this latter 
observation was due to a drift in the impedance spectroscopy mea
surements which was not related to the samples. It simply occurred 
because of a drift in the second batch of measurements, performed a few 
days after the first batch. No reason could be established for the drift, 
which is an artifact. Under normal circumstances, we would have to 
perform a novel set of measurements to verify reproducibility and 

Scheme 1. Schematic representation of the microfluidic electronic tongue that comprises four sensing units, forming an association of capacitors in parallel, having 
one electrode above (EA) and the other below (EB) the microchannel through which the sample is injected. 

Table 1 
Dataset size for each label.  

Labels Number of samples 

cancer Sample 

NO Control 14 
YES Floor of mouth 4 

Other oral cavity subsites 9 
Total  27  

Table 2 
Dataset distribution for each clinical feature and label.  

Cancer case patients smoking alcoholism gender 

no former yes no former yes male female 

NO Control 14 3 3 8 9 4 1 11 3 
YES Floor of mouth tumor 4 0 2 2 0 4 0 4 0 

Other oral cavity tumor subsite 9 1 3 5 1 2 6 7 2  
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remove the drift. However, our objective in this study is precise to 
exploit data analysis methods that should be sufficiently robust to 
classify complex samples, such as those of saliva here, and eliminate 
possible interferences from experimental artifacts and changes in the 
environment. Hence, the undesired drift is considered here as a happy 
coincidence to test the robustness of our analysis approaches. 

Attempts to distinguish between different samples using dimensional 
reduction and multidimensional projection methods, as normally done 
with e-tongue data, failed. None of the techniques used, viz. PCA, NCA, 
TSNE, and IDMAP, provided reasonable distinction, as indicated in 
Figs. S2 and S3 in the Supporting Information. The results from clus
tering with the non-supervised machine learning algorithms KM, HAC, 
and SC are shown in Table 3 where the quality of classification was 
evaluated using ASW. The spectra features were scaled with standardi
zation. The performances of the algorithms were low, even for binary 
classification, and there is a small improvement when using all features 
(spectra features and clinical data). 

Classification using supervised machine learning. Table 4 shows 
the average accuracy (standard deviation, SD) values obtained with the 
algorithms LR, LDA, GNB, KNN, SVML, SVMP, SVMR and RF applied to 
the situations only-sensor and all-features in binary and multiclass 
analysis. For all models, the average accuracy was obtained by a 10 × 5 
Nested K-Fold Cross-Validation (kouter = 10 and kinner = 5). As in the 
clustering, the spectra features were scaled with the standardization 
method, except for the RF models which were built upon data not pre- 
processed. For the binary classification, high accuracy values were ob
tained with SVMR and RF (similar accuracy considering the dispersion). 

As expected, for the multiclass analysis the accuracy was considerably 
lower, which is seen in the last column in Table 4. The most efficient 
algorithm was RF and the inclusion of clinical features provided a small 
enhancement in performance. 

Since RF was among the most efficient algorithms, it was possible to 
employ the concept of Multidimensional Calibration Space (MCS) [72] 
with which one may allow for some degree of predictability in the 
analysis of new data because rules are generated that provide the rea
sons for classification. This is especially important for the diagnosis 
based on the limited body of e-tongue results reported here. The 
proof-of-principle results do indicate that one may use an e-tongue to 
distinguish saliva samples from cancer patients from healthy in
dividuals. With an MCS one can go one step further and establish the 
conditions for classification when a new set of data are analyzed. The 
concept behind MCS and its use in simple examples are described in the 
Supporting Information (Section 3). 

Fig. 2 presents the MCS for the binary problem (classes NO or YES, 
for negative and positive for cancer, respectively) using both sensor and 
clinical data, with ExMatrix [91] where the RF model is represented as 
logic rules into a matrix visual metaphor. In such representation, rows 
are rules, columns are features, and cells are the rule predicates. The rule 
predicates specify range values of capacitance for frequencies obtained 
from the sensor, as well as ranges for the two possible values (0 and 1) of 
the clinical features (e.g., 0 or 1 for the feature “alcoholism_no” means 
negative or positive for a non-alcoholic patient). We employed the 
complementary features “alcoholism_yes” and “alcoholism_no” as 
separate features for the convenience of the algorithm implementation. 
The ranges defined by the rules are related to one of the two classes (NO 
and YES) mapped as category colors (blue and orange). With rules 
(rows) ordered by class and coverage and features (columns) by 
importance, this MCS is composed of 26 dimensions corresponding to 26 
selected features (frequencies in the sensing measurements with the 
e-tongue and clinical data), which provide the best distinguishing ability 
among samples. The two most important features (first two columns) for 
RF are frequency 215 Hz and “alcoholism_no”, with importance values 
of 0.156 and 0.123, respectively. According to their high coverage rules, 
low capacitance values at frequency 215 Hz are related to the class YES 
(orange color). In the first column, small orange ranges are found at the 
leftmost, and there are no equally positioned blue ranges. Leftmost or
ange ranges can also be seen in the second column for high coverage 
rules, matching the value 0 (negative) for clinical feature “alcohol
ism_no”, while the leftmost blue ranges are not found for such rules. This 
means that from the point of view of the most generic knowledge with 
the RF model, patients with alcoholism issues and with low capacitance 
values at frequency 215 Hz are prone to be classified positive for cancer. 

Fig. 1. Capacitance spectra for a) cancer labels, i.e., YES or NO, and b) case, i.e., control, and cancer on the floor or cavity of mouth.  

Table 3 
ASW for clustering with KM, HAC, and SC algo
rithms. The best results for 2- and 3- cluster or
ganizations are highlighted. 
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The MCS in Fig. 2 gives 80% average accuracy with the RF model. The 
average sensitivity and specificity can also be calculated, being 65% and 
90% respectively. The sensitivity regards how well the calibration rec
ognizes true positives, while specificity how well it identifies true neg
atives. Hence, the calibration will potentially recognize (on average) 
65% of the patients that have cancer, and 90% of the healthy patients. 
An MCS can also be established for the multiclass problem (sample case: 
control, floor, and cavity), but the average accuracy drops to 66.7%. In 
this case, many and more complex rules are required, as one should 
expect. 

Several issues should be discussed about the results obtained with 
the calibration space. First of all, the calibration space found for the 
binary classification had 26 dimensions, which is considerably higher 
than for the datasets of other e-tongues. For example, in Ref. [72] cali
bration spaces had up to 5 dimensions for the full coverage of the 
dataset, i.e., the prediction accuracy was 100% for multiclass classifi
cation. With the dataset analyzed here, the calibration space had only 
80% accuracy, despite its 26 dimensions. These results do indicate that 
more data would be necessary for full coverage of the space, which 
should be expected because e-tongues do not contain biosensors that 
could detect cancer biomarkers specifically. Furthermore, the shift in a 
part of the impedance spectra made it more difficult to achieve an ac
curate classification. Based on sensitivity and specificity results (65% 
and 90%), the calibration is more suitable for identifying patients that 
do not have cancer (healthy). On the other hand, there is a clear indi
cation that e-tongue data can be combined with another type of data (as 
clinical features used here) to provide a successful diagnosis of cancer 
and other diseases. With more and better representative samples, higher 
average accuracy may be achieved, probably with a simpler RF model (i. 
e. with an MCS with fewer dimensions). 

4. Conclusions 

We have demonstrated that e-tongue data can be used in cancer 
diagnosis, even without detecting a specific biomarker. This is made 
possible because pattern recognition can be applied within the global 
selectivity paradigm. The difficulty in diagnosing was highlighted by the 
poor performance of statistical methods and non-supervised learning in 
distinguishing between the saliva samples of cancer patients and healthy 
individuals. With supervised machine learning, on the other hand, a 
reasonable accuracy of ca. 80% for the binary classification (YES or NO 
for cancer) and ca. 70% when the three classes were considered (floor/ 
cavity cancer, and control). These accuracy values are expected to in
crease when a larger number of samples are used, from which a more 
efficient training can be made with the machine learning algorithms. 
The accuracy tended to increase when clinical information from the 
patients was used in conjunction with the e-tongue impedance data. This 
is particularly encouraging for further studies as the combination of data 
from different natures is a hallmark of the new paradigm of computer- 
assisted diagnosis [92]. Also promising for future developments is the 
robustness of the classification approach based on machine learning 
applied to e-tongue data. The approach may be used in any type of 
application with reasonable performance even when there are problems 
and limitations in the data, as was the case here. 
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