

WORKSHOP

GLAUCIUS 6.0

São Carlos 31 de outubro de 2019

- 1. Pyrano chalcones and a flavone from *Neoraputia magnifica* and their *Trypanosoma cruzi* glycosomal glyceraldehyde-3-phosphate dehydrogenase-inhibitory activities. PHYTOCHEMISTRY **55**, 643-651, 2000.
- 2. Strategies for the isolation and identification of trypanocidal compounds from the Rutales. PURE AND APPLIED CHEMISTRY **73**, 617-622, 2001.
- 3. Structure of *Trypanosoma cruzi* glycosomal glyceraldehyde-3-phosphate dehydrogenase complexed with chalepin, a natural product inhibitor, at 1.95 angstrom resolution. FEBS LETTERS **520**, 13-17, 2002.
- 4. Enzymatic inhibition studies of selected flavonoids and chemosystematic significance of polymethoxylated flavonoids and quinoline alkaloids in Neoraputia (Rutaceae). JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY **14**, 380-387, 2003.

- 5. 3D QSAR studies on binding affinities of coumarin natural products for glycosomal GAPDH of *Trypanosoma cruzi*. JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN **17**, 277-290, 2003.
- 6. Redetermination and comparative structural study of isopimpinellin: a new inhibitor against the Leishmania APRT enzyme. ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE **59**, O1506-O1508, 2003.
- 7. Redetermination of skimmianine: a new inhibitor against the Leishmania APRT enzyme. ACTA CRYSTALLOGRAPHICA SECTION E-STRUCTURE REPORTS ONLINE **59**, O1503-O1505, 2003.
- 8. 3-(5,7-Dimethoxy-2,2-dimethyl-2H-benzo[b]-pyran-6-yl)propionic acid: a potential inhibitor against Leishmania. ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS **59**, O1575-O1577, 2003.
- 9. Structure-activity relationships of novel inhibitors of glyceraldehyde-3-phosphate dehydrogenase. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS **14**, 2199-2204, 2004.
- 10. Aurapten, a coumarin with growth inhibition against *Leishmania major* promastigotes. BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH **37**, 1847-1852, 2004.

- 11. Screening of Leishmania APRT enzyme inhibitors. PHARMAZIE 60, 781-784, 2005.
- 12. Natural products biological screening and ligand-based virtual screening for the discovery of new antileishmanial agents. LETTERS IN DRUG DESIGN & DISCOVERY 5, 158-161, 2008.
- 13. Anacardic acid derivatives as inhibitors of glyceraldehyde-3-phosphate dehydrogenase from *Trypanosoma cruzi*. BIOORGANIC & MEDICINAL CHEMISTRY **16**, 8889-8895, 2008.
- 14. Enzymatic inhibitory activity and trypanocidal effects of extracts and compounds from *Siphoneugena densiflora* O. Berg and *Vitex polygama* Cham. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES **63**, 371-382, 2008.
- 15. Screening of *Trypanosoma cruzi* glycosomal glyceraldehyde-3-phosphate dehydrogenase enzyme inhibitors. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY **19**, 1-6, 2009.
- 16. Isolation of Tiliroside from *Spiranthera odoratissima* as Inhibitor of *Trypanosoma cruzi* Glyceraldehyde-3-phosphate Dehydrogenase by Using Bioactivity-Guided Fractionation. JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY **28**, 512-519, 2017.

Pure and Applied Chemistry

Home

ASAP Articles

Archive

Submission & Review

Subscription

Contact

Strategies for the isolation and identification of trypanocidal compounds from the Rutales. PURE AND APPLIED CHEMISTRY **73**, 617-622, 2001.

Pure Appl. Chem., 2001, Vol. 73, No. 3, pp. 617-622 http://dx.doi.org/10.1351/pac200173030617

Strategies for the isolation and identification of trypanocidal compounds from the Rutales

Paulo C. Vieira¹*, Jair Mafezoli¹, Mônica T. Pupo², João B. Fernandes¹, M. Fátima das G. F. da Silva¹, Sérgio de Albuquerque², Glaucius Oliva³ and Fernando Pavão^{4,3}

- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP, Brazil
- ² Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
- ³ Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
- ⁴ Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil

Structure of Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase complexed with chalepin, a natural product inhibitor, at 1.95 angstrom resolution. FEBS LETTERS **520**, 13-17, 2002.

Structure of *Trypanosoma cruzi* glycosomal glyceraldehyde-3-phosphate dehydrogenase complexed with chalepin, a natural product inhibitor, at 1.95 Å resolution

F. Pavão, M.S. Castilho, M.T. Pupo, R.L.A. Dias, A.G. Correa, J.B. Fernandes, M.F.G.F. da Silva, J. Mafezoli, P.C. Vieira, G. Oliva

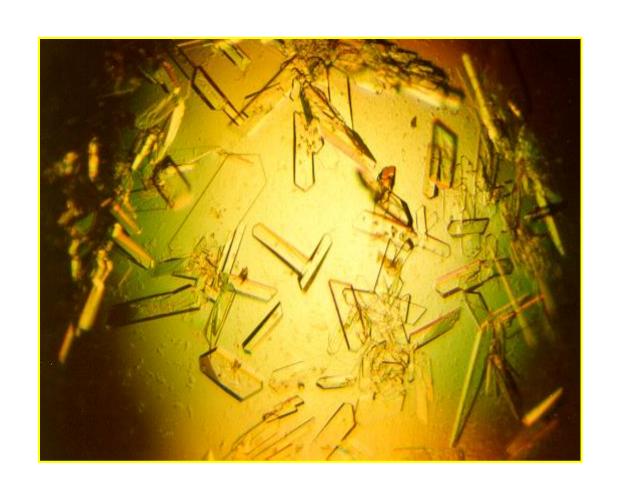
Volume 520, Issue 1-3 June 05, 2002 Pages 13-17

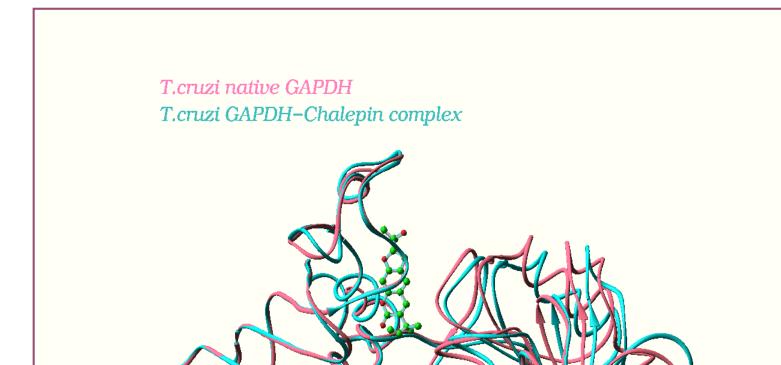
Inibition of GAPDH (%)

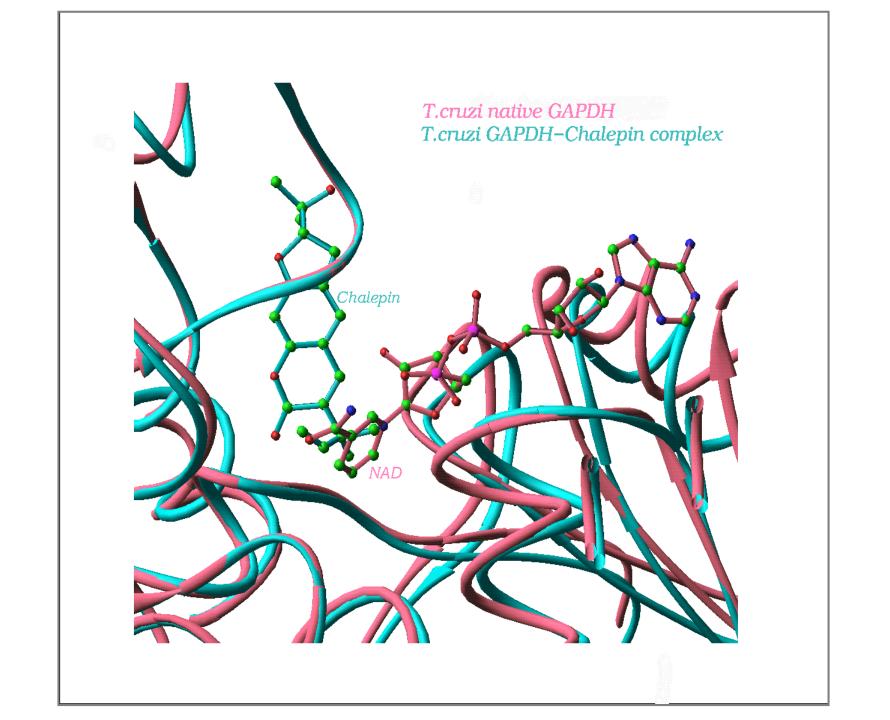
	Lysis (%)	concentration (μg/mL)			
Compound	250μg/mL	20	30	50	100
Shoreic acid	9.2				6.8
Ocotillone	34.9				32.5
Scopoletin	52.2		14.4		27.5
Steroids	20				13.1
Isoangenomalin	22.7				24.2
Xanthyletin	21.3		24.4	75.1	98.8
Chalepin	13.9	44.8	75.1	97.4	99.1
Dictamnine	17.6				30.0
Lichexanthone	22.7			20.0	
Arborinin	45.6				34.1
Xanthoxolin	66.4				8.4
New alkaloid	63.6				17.4
Tetramethoxyacridone	55.8				4.5
methylarborinin	63.2				8.0

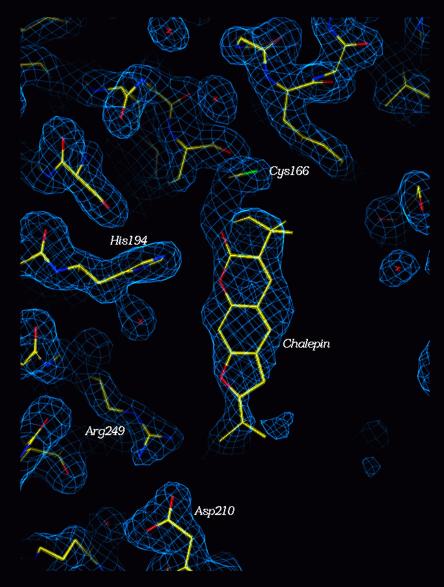
Coumarins

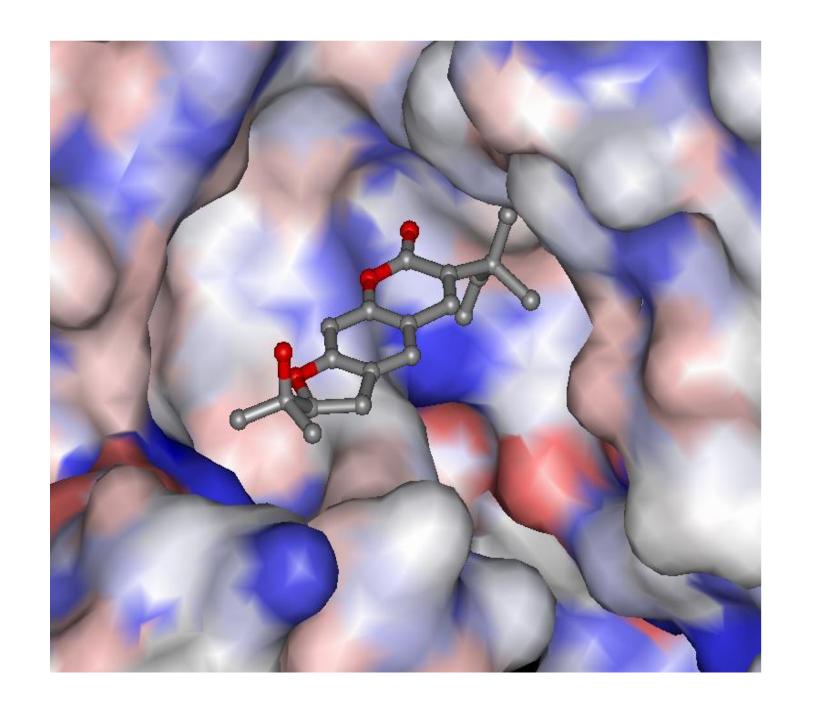
HO
$$\frac{1}{1050} = 64 \mu M$$
 $\frac{1}{1050} = 123 \mu M$ $\frac{1}{1050} = 123 \mu M$ $\frac{1}{1050} = 123 \mu M$ $\frac{1}{1050} = 130 \mu M$ $\frac{1}{1050} = 145 \mu M$ $\frac{1}{1050} = 164 \mu M$ $\frac{1}{1050} = 175 \mu M$ $\frac{1}{1050} = 190 \mu M$ $\frac{1}{1050} = 210 \mu M$


Compounds submitted to experiments of Cocrystallization in microgravity

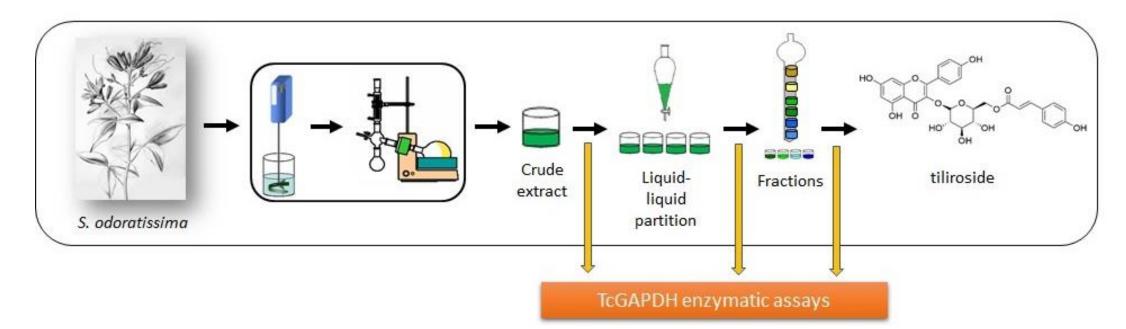

$$CH_3O$$
 CH_3O
 OCH_3
 $OCH_$

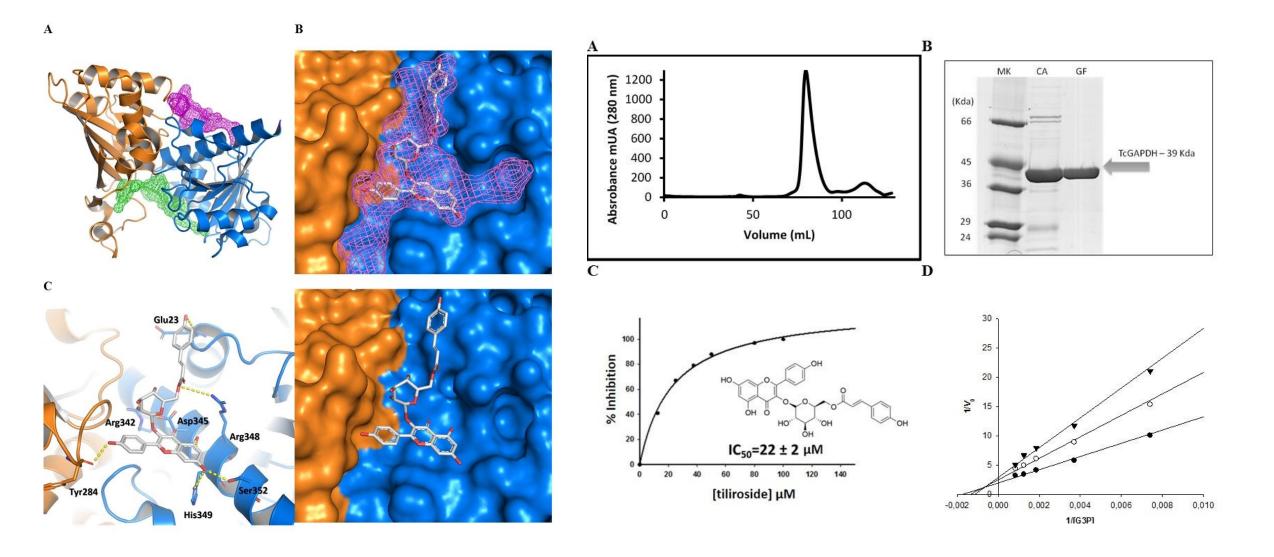

chalepin


Crystals of the complex enzyme-chalepin



T.cruzi GAPDH–Chalepin complex





Isolation of Tiliroside from Spiranthera odoratissima as Inhibitor of Trypanosoma cruzi Glyceraldehyde-3-phosphate Dehydrogenase by Using Bioactivity-Guided Fractionation

Vivian E. Cornelio, Fernando V. Maluf, João B. Fernandes, Maria Fátima G. F. da Silva, Glaucius Oliva, Rafael V. C. Guido and Paulo C. Vieira*.

Isolation of Tiliroside from *Spiranthera odoratissima* as Inhibitor of *Trypanosoma cruzi* Glyceraldehyde-3-phosphate Dehydrogenase by Using Bioactivity-Guided Fractionation. JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY **28**, 512-519, 2017.

