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Abstract: Fluid dynamics In porous materials is an important issue In different areas, such as scientific and technological, especially in oil exploration. Several NMR studies are

being developed to elucidate fluid dynamics in porous media and estimate properties such as permeabillity, tortuosity and characteristic lengths. In order to understand, computationally,
the correlation between NMR data and the fluid dynamics restricted in porous media Is necessary to develop technigues for both physical phenomena. Using a random walk method In
position and phase space, we developed a software to obtain the T,-distribution based in the intrinsic diffusion of the fluid molecules in the porous media reconstruct by microCT images.
This computational physics model is able to simulate information obtained by one and two-dimensional NMR techniques.
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This work combines two random walk approaches, over the space and phase-space, in order to simulate the Diagram Software:
relaxation behavior of fluids within porous media, taking into account the dephasing due the interactions of the nuclel
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Physical interactions Multidimensional NMR Conclusions and Perspectives:
to be Included | . Techniques: This computational physics model is able to simulate information obtained by one and two-
| - T xT. Exch dimensional NMR techniques, such as CPMG and T,xT, Exchange [1-3], making it possible to
ener e Moy = onger 12 . X I EXChange identify different diffusion regimes and better understand the spin migration along different sites
N In the porous space. The next step Is Include the longitudinal relaxation effects and
\ . multidimensional NMR methods to correlate with important properties of porous materials, e.g.,
| V permeability and structure factor.
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