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Correlations in quantum systems exhibit a rich phenomenology under the effect of various sources of

noise. We investigate theoretically and experimentally the dynamics of quantum correlations and their

classical counterparts in two nuclear magnetic resonance setups, as measured by geometric quantifiers

based on trace norm. We consider two-qubit systems prepared in Bell diagonal states, and perform the

experiments in real decohering environments resulting from Markovian local noise which preserves the

Bell diagonal form of the states. We then report the first observation of environment-induced double

sudden transitions in the geometric quantum correlations, a genuinely nonclassical effect not observable in

classical correlations. The evolution of classical correlations in our physical implementation reveals in

turn the finite-time relaxation to a pointer basis under nondissipative decoherence, which we characterize

geometrically in full analogy with predictions based on entropic measures.
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Introduction.—Quantum technology embraces some of
the most exciting modern developments in physics, mathe-
matics, engineering, and computer science. These were
spurred by the discovery that distinctive quantum features,
such as superposition and entanglement, can be exploited as
practical resources for novel or enhanced sensing, commu-
nication, and computation [1]. Mass adoption of quantum
technologies, however, demands a deeper understanding of
the ultimate ingredients which enable improvements over
classical scenarios and the ability to sustain those properties
against the typically detrimental effects of decoherence.
Beyond entanglement, subtler forms of nonclassical corre-
lations such as the quantum discord [2,3] have emerged as
key quantum signatures [4–6] with operational roles,
e.g., in quantum metrology [7–9], entanglement activation
[10–12], information encoding, and distribution [13,14].
Studying the behavior of quantum correlations under physi-
cal sources of noise is then pivotal to their exploitation for
real-world implementation of these and related protocols.

In the presence of decohering environments, quantum
discord does not exhibit the phenomenon of sudden death
[15–17], and is typically more robust against noise than
entanglement [18] (see also Refs. [19,20]). When eval-
uated on simple Bell diagonal states of two qubits, the
traditional entropic measure of quantum discord [2] dis-
plays peculiar properties in its decay rate, such as freezing
[21] and sudden changes, i.e., abrupt transitions at specific
evolution times [22] (see Ref. [23] for a critical study on
more general states). Moreover, the entropic classical cor-
relation [3] complementary to the quantum discord has

recently been employed to characterize the emergence of
the pointer basis of an apparatus subject to decoherence
[24]. This characterization shows that the time �E for the
emergence of the pointer basis is conceptually distinct
from the decoherence half-life �D (decoherence time).
Experimental investigations of both the freezing and the
sudden change phenomena have been realized through
different physical setups [25–27], while the emergence of
a pointer basis has only recently been observed in an
experiment with polarization entangled photon pairs [24].
Alternatively to an entropic approach, quantum correla-

tions in a bipartite quantum state � can also be measured—
and typically more simply evaluated—via a geometric
scenario, in terms of the distance between � and the closest
state with zero discord, where states with zero discord are
described by density operators which are left undisturbed by
a nonselective measurement over one subsystem. In this
context, the trace-norm (Schatten 1-norm) geometric quan-
tum discord (GQD-1) plays a special role [28–33], as it
defines a rigorous and physically motivated measure which
does not increase under local trace-preserving quantum
channels for the unmeasured part (as a consequence of the
contractivity of the trace norm [28,34,35]). The GQD-1 thus
does not suffer from an inherent problem which affects
instead the Hilbert-Schmidt (Schatten 2-norm) geometric
quantum discord originally introduced in [36], as well as any
Schattenp-normmeasure of discord for p � 1. The GQD-1
furthermore inherits the robustness of the entropic quantum
discord against noise, because it is also capable of exhibiting
freezing [37] and sudden change behaviors [38]. Moreover,
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it displays a new effect for Bell diagonal states, which is the
possibility of double sudden changes [38]. The freezing and
single sudden change behaviors for GQD-1 have recently
been experimentally verified [39] through the observation of
the negativity of quantumness [11], a quantum correlation
measure equivalent to GQD-1 for qubit states [31,32].

In this Letter we report the first experimental realization
of the double sudden change behavior via two distinct
NMR setups, where different Markovian noisy channels
are induced by real physical interactions inducing relaxations
on partially polarized nuclear spin ensembles. Moreover, we
show that these double sudden changes are a genuinely
quantum effect, which are forbidden in the geometric clas-
sical correlations associated with GQD-1 [40,41]. Geometric
quantum and classical correlations take very simple and
experimentally friendly expressions for Bell diagonal states,
directly given by spin-spin correlation functions in different
directions. Our study further allows the establishment of a
complete equivalence between the entropic and the geomet-
ric characterizations of the emergence of the pointer basis
in an apparatus subject to decoherence. The relaxation to
the pointer basis at a finite emergence time �E is then
demonstrated as a by-product in our NMR implementation.

Geometric correlations.—Let us begin by considering a
two-qubit system AB described by a density operator �.
We will focus here on the particular case of two-qubit Bell
diagonal states, whose density operator is of the form � ¼
1
4 ½I � IþP3

i¼1 ci�i � �i�, where I is the identity matrix,

f�ig are the Pauli matrices, and fci ¼ h�i � �iig are spin-
spin correlation functions. Geometric quantifiers of quan-
tum (namely, GQD-1) and classical correlations between A
and B can be defined through the trace distances [40]

QGð�Þ ¼ inf
�
trj�� �j ¼ trj�� ��j; (1)

CGð�Þ ¼ trj�� � ��j; (2)

where �� is a classical-quantum state [42] emerging from a

projective measurement on subsystem A that minimizes
Eq. (1), whereas �� ¼ �A � �B represents the product of

the local marginals of �. In this case, �A ¼ �B ¼ I=2 and
�� ¼ ðI � Iþ cj�j � �jÞ=4, where j is such that jcjj cor-
responds to the maximum of the set fjcijg. Defining c�, c0,
and cþ as the minimum, intermediate, and maximum of
fjcijg, respectively, Eqs. (1) and (2) reduce to [40]

QG ¼ c0; CG ¼ cþ: (3)

It is worth mentioning that the classical part in Eq. (3)
is monotonically related to the expression obtained in
Ref. [41] through an alternative definition for the geometric
trace-norm classical correlation, which takes into account
an extra optimization to find out the closest product state.

Decoherence.—Wewill consider the system-environment
interaction through the operator-sum representation formal-
ism [1]. In this context, we will take the evolution of
the quantum state � as described by a trace-preserving
quantum channel given by "ð�Þ ¼ P

i;jðEA
i � EB

j Þ�ðEA
i �

EB
j Þy, where fEs

kg is the set of Kraus operators associated

with a decohering process of the qubit s, with the trace-

preserving condition reading
P

kE
sy
k Es

k ¼ I. We provide in

Table I the Kraus operators for the two quantum channels
considered in this work: phase damping (PD) and general-
ized amplitude damping (GAD).
The PD decoherence process preserves the Bell diagonal

form of the density operator �. For the case of GAD, the
Bell diagonal form is kept for �s ¼ 1=2. In this situation,
as ps ¼ 1� exp½�t=Ts� is a function time t, with Ts the
relaxation time of the qubit s, we can write

"ð�Þ ¼ �ðtÞ ¼ 1

4

�

I � IþX3

i¼1

ciðtÞ�i � �i

�

; (4)

where the time-dependent correlation function ciðtÞ is
given in Table II in terms of the initial value cið0Þ ¼ ci
and of the decoherence time �D ¼ TATB=ðTA þ TBÞ.
Since �ðtÞ preserves the Bell diagonal form, we can

directly obtain the dynamics of the geometric quantum
and classical correlations from Table II by using the
respective expressions QGðtÞ ¼ c0ðtÞ, CGðtÞ ¼ cþðtÞ.
Thus, we can get general patterns of the geometric corre-
lations as functions of the parameters fcj � cjð0Þgj¼�;0;þ
and �D. Depending on the values assumed by these pa-
rameters, QðtÞ and CðtÞ may present nonanalyticities
caused by crossings among jc1ðtÞj, jc2ðtÞj, and jc3ðtÞj,
which give rise to the occurrence of double sudden change
and emergence of the pointer basis phenomena.
Double sudden change.—For a two-qubit Bell diagonal

state evolving under Markovian local noise preserving their
Bell diagonal form as described by the PD or GAD chan-
nels, the quantum geometric correlation (GQD-1) is able to
exhibit at most two sudden changes as a function of time.
Indeed, it can be observed in Table II that, for both PD and
GAD channels, jc1ðtÞj and jc2ðtÞj display the same decay
rate, which means that they do not cross as functions of t.
Therefore, only the crossings jc3ðtÞj ¼ jc1ðtÞj and jc3ðtÞj ¼
jc2ðtÞj are allowed, implying at most two nonanalyticities
in the intermediate value c0ðtÞ ¼ QGðtÞ. The analytical ex-
pressions for the critical points t ¼ t�1 and t ¼ t�2 (t�2 > t�1)
associated with this double sudden change behavior are
indicated in Table III. These results generalize the expres-
sions obtained in Ref. [38] for the particular case TA ¼ TB.
On the other hand, the crossings jc3ðtÞj ¼ jc1ðtÞj and

jc3ðtÞj ¼ jc2ðtÞj allow for at most a single nonanalyticity in

TABLE I. Kraus operators for the PD and GAD quantum
channels, where the parameters ps and �s represent decoherence
probabilities.

Channel Kraus operators

PD Es
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ps=2

p
I, Es

1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
ps=2

p
�3:

Es
0 ¼ ffiffiffiffiffiffi

�s
p ½ 1 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ps

p �, Es
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �s

p ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ps

p
0

0 1
�;

GAD

Es
1 ¼ ffiffiffiffiffiffi

�s
p ½ 0

ffiffiffiffiffi
ps

p
0 0

�, Es
3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �s

p ½ 0 0
ffiffiffiffiffi
ps

p
0
�:
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the geometric classical correlations CGðtÞ ¼ cþðtÞ. This
sudden change occurs at times t�2 and t�1 for the PD and
GAD channels under the necessary and sufficient condi-
tions cþ > jc3j � 0 and jc3j> c0 � 0, respectively. This
implies that the double sudden change is, for Bell diagonal
states, a genuinely quantum effect, which is unattainable
for CG. Since the original entropic classical correlation CE

[3] is monotonically related with CG within the whole class
of Bell diagonal states [40], its dynamics CEðtÞ also
presents at most one single sudden change. Moreover, as
the original entropic quantum discord [2] is given byQE ¼
TE � CE, with the entropic total correlation TE being a
smooth function, we conclude that QEðtÞ is unable to dis-
play double sudden changes.

Emergence of the pointer basis.—A quantum apparatus
A measuring a system S suffers decoherence through
contact with the environment, collapsing into a possible
set of classical states known as the pointer basis [43]. The
emergence of these pointer states is attributed to the instant
of time �E at which the entropic classical correlation CE

between A and S becomes constant [24]. In other words,
�E is the necessary time for the information about S to be
accessible to a classical observer. In particular, if the
system AS under decoherence is described by Eq. (4),
the geometric classical correlation CG can be used to
characterize �E, since CG and CE are monotonic between
themselves for Bell diagonal states. In fact, from Table II it
is easily seen that CGðtÞ ¼ c0ðtÞ becomes constant in finite
time only for the PD channel at the sudden change point

�E ¼ �D ln½cþ=jc3j� ðcþ > jc3j � 0Þ; (5)

which is in complete agreement with �E found in Ref. [24] by
using CE. Depending on the ratio cþ=jc3j, the pointer basis
can emerge at time �E smaller or larger than the decoherence
time �D. On the other hand, the GAD channel does not allow
for the emergence of a pointer basis at finite time.

Experimental results.—We performed two distinct ex-
perimental implementations based on NMR setups, each of
them realizing different physical quantum channels. Our aim
was to explore separately either the PD or GAD channels,
since they are inequivalent concerning the emergence of the

pointer basis. The state of a NMR two-qubit system in the
high temperature approximation is given by �¼1

4I4þ���,

where �¼@!L=4kBT�10�5 is the ratio between the mag-
netic and thermal energies at room temperature, !L is the
Larmor frequency, kB is the Boltzmann constant, and T the
temperature [44,45]. All measurements and transformations
affect only the deviation matrix ��, which contains the
available information about the system state. The unitary
operations over �� are implemented by radio frequency
pulses and evolutions under spin interactions, with an excel-
lent control of rotation angle and phase. Additionally, NMR
offers very reliable quantum state tomography, which can be
used to obtain a full characterization of �� [46–48]. It is
worth remarking that, since in NMR experiments only the
deviation matrix is detected, the calculations of the correla-
tion matrix elements fcig are done in units of �.
The first set of NMR experiments were performed on a

liquid state Carbon-13 enriched chloroform sample
(CHCl3) at room temperature, with the two qubits being
encoded in the 1H and 13C spin-1=2 nuclei, and employing
a Varian 500 MHz spectrometer. The relevant relaxation

times were measured as TC
1 � 12:46 s, TC�

2 � 0:15 s for
13C, and TH

1 � 7:53 s, TH�
2 � 0:27 s for 1H. Since T1 �

T�
2 for both qubits and the system decoherence was eval-

uated within a maximum evolution time of approximately
0.5 s, the relaxation mechanism is described effectively by

a PD channel with TA ¼ TH�
2 and TB ¼ TC�

2 . A Bell diago-
nal state, with the coefficients c1 ¼ 0:49, c2 ¼ 0:20, and
c3 ¼ 0:067, was obtained by applying the pulse sequence
illustrated in Fig. 1(a), where the pseudopure state j00ih00j
was prepared as described in Refs. [1,49]. The resulting
deviation matrix was of the form �� ¼ c1�x � �x þ
c2�y � �y þ c3�z � �z, where c1 ¼ �2 cos�, c2 ¼
�2 cos	, c3 ¼ �2 cos� cos	, with tunable 	 and �.
After the initial state preparation, the system was left to
evolve for a time �i and quantum state tomography [46]
was performed to reconstruct the evolved deviation matrix.
The process was repeated for different values of �i in order
to monitor the state relaxation. Figure 1 shows the time
dependence of the quantum and classical geometric corre-
lations as well as the individual correlation functions,
calculated from the measured deviation matrices. The con-
tinuous lines correspond to theoretical predictions calcu-
lated according to the expressions in Table II. Note thatQG

clearly exhibits a double sudden transition at critical points
t�1 ¼ ð0:107	 0:006Þ s and t�2 ¼ ð0:198	 0:006Þ s, which
are compatible with the theoretical values t�1 ¼ 0:105 s and
t�2 ¼ 0:192 s, as predicted by Table III. The emergence of
the pointer basis in CG is also evident at �E ¼ t�2.
The implementation of a system in which the relaxation

is fully described by a GAD channel was achieved using a
spin-3=2 NMR quadrupolar system. A spin-3=2 in the
presence of a strong static magnetic field is described by
four energy levels, which can be indexed as j00i,j01i, j10i,
j11i to represent a two-qubit system [47,50–52]. The en-
ergy separation between the levels as well as the system
relaxation are dictated by the interaction between the

TABLE III. Critical points t�1 and t�2 in terms of the parameters
c�, c0, cþ, and �D.The conditions provided are necessary and
sufficient for the occurrence of double sudden transitions.

Channel t�1 t�2 Conditions

PD �D ln½c0=jc3j� �D ln½cþ=jc3j� jc3j ¼ c�
cþ � c0 � c� � 0

GAD 2�D ln½jc3j=c0� 2�D ln½jc3j=c�� jc3j ¼ cþ
cþ � c0 � c� � 0

TABLE II. Correlation function ciðtÞ for the PD and GAD quan-
tum channels in terms of ci and �D. For GAD, we fixed �s ¼ 1=2.

Channel c1ðtÞ c2ðtÞ c3ðtÞ
PD c1 exp½�t=�D� c2 exp½�t=�D� c3
GAD c1 exp½�t=2�D� c2 exp½�t=2�D� c3 exp½�t=�D�
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nuclear quadrupole moments with electric field gradients
produced by the charge distribution in their surroundings
[44]. The relaxation for this system is described by two
channels: a GAD channel as in Table I and a global PD
channel, acting simultaneously on both logical qubits, with
Kraus operators given in Ref. [53]. The global PD channel
does not act on the cross-diagonal terms of the deviation
matrix, which means that for Bell diagonal states the
decoherence is completely dictated by the GAD channel
[53]. The experiments on the spin-3=2 system were per-
formed with sodium nuclei in a liquid crystal sample at
room temperature using a Varian 400 MHz spectrometer.
The relevant relaxation times were estimated as TA ¼
TB � 0:012 s and the initial Bell diagonal state [c1 ¼
0:08, c2 ¼ 0:14, and c3 ¼ 0:16, Fig. 2(a)] was prepared
using a set of numerically optimized radio frequency
pulses obtained by the strong modulated pulse technique
[54]. Figure 2 shows the time dependence of the quantum

and classical correlations as well as the correlation
functions, as calculated from the measured deviation
matrices following the same procedure described before.
Note also here that QG exhibits a double sudden transition,
corresponding to the crossings jc2ðtÞj ¼ jc3ðtÞj and
jc1ðtÞj ¼ jc3ðtÞj, at critical points t�1 ¼ ð0:0020	
0:0005Þ s and t�2 ¼ ð0:0081	 0:0005Þ s. According to
Table III, the theoretical critical points are t�1 ¼ 0:0016 s
and t�2 ¼ 0:0083 s. As expected, the presence of a single
sudden change in theCG curve is also observed, but there is
no emergence of the pointer basis at finite time in this case.
Conclusions.—We performed a detailed analysis of bona

fide geometric measures of quantum and classical correla-
tions in paradigmatic two-qubit Bell diagonal states realized
experimentally by room temperature NMR setups, in the
presence of physical sources of phase damping and gener-
alized amplitude damping noise. We observed recently pre-
dicted distinctive features of quantum correlations such as
double sudden changes in their dynamics [38] and saturation
of classical correlations denoting a relaxation to a pointer
basis [24]. Future investigations will be devoted to assess
whether the finite-time emergence of the pointer basis,
established here for geometric correlations complementing
the case of entropic ones [24], can be regarded as a universal
feature common to all valid quantifiers of classical correla-
tions, along the lines of Ref. [37].
This work is supported by the Brazilian agencies

CNPq, CAPES, FAPERJ, FAPESP, the Brazilian National
Institute for Science and Technology of Quantum
Information (INCT-IQ), and the University of Nottingham.
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sequence employed to obtain a deviation matrix in the form of a
Bell diagonal state. (b) Experimentally reconstructed block dia-
grams for real and imaginary parts of the deviation matrix related
to the Bell diagonal initial state with c1 ¼ 0:49, c2 ¼ 0:20, and
c3 ¼ 0:067. The curves in (c) denote the time evolutions of
quantum (QG, bullet) and classical (CG, triangle) correlations,
respectively. The dots represents the experimental results and the
solid lines are the theoretical predictions. In the inset we detail
the time evolutions of jc1j (yellow upward triangles), jc2j (blue
squares), and jc3j (purple downward triangles) experimentally
obtained for the PD decoherence process.
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