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Abstract – We present a protocol for high-fidelity information transfer and processing between
remote multi-branch nonideal quantum circuits (QCs). A set of outputs of a QC is simultaneously
coupled to the corresponding set of inputs of another, remote, QC through a single realistic
nonideal data bus (DB). The normal modes of the DB are exploited to induce a Raman-like
coupling on each colored output-input channel which enables the circuits to exchange information
without effectively exciting the DB. Being only virtually excited, the nonidealities of the DB are
substantially weakened, rendering a high-fidelity tunneling-like information transfer and processing
between the remote multi-branch QCs.

Copyright c© EPLA, 2013

The simultaneous transfer and processing of parallel
data streams between remote multiport quantum circuits
(QCs) is a core requirement for the implementation of clas-
sical as well as quantum communication and computation.
In this regard, perfect or high-fidelity transfer of quantum
states has attracted much attention since its introduction
at the beginning of the 2000s [1]. Aiming to optimize
the control required for communication between distant
nodes in a QC, the research effort devoted to state transfer
has led to the necessary and sufficient conditions, within
spin [2] and resonator networks [3], for it to demonstrate
that perfect transfer can occur in an entire class of topolo-
gies [4]. State transfer through realistic noise channels has
also been addressed within spin chains [5,6] and a proto-
col for quasi-perfect state transfer in a network of dissipa-
tive resonators [7,8] seems to broaden the perspective on
the subject of decoherence-(quasi-)free subspaces [9]. In a
more recent contribution [10], the process of quasi-perfect
remote state transfer has been formally characterized as
a nonlocal tunneling process where —by analogy with the
tunneling effect in a double-well barrier— the overlap be-
tween distant sender and the receiver wave functions is
indirectly mediated by the normal modes of the data bus
(DB), i.e., the transmission kernel of the network. More-
over, in the same study, it is demonstrated that this nonlo-
cal tunneling enables not only the transfer of states (or ex-
citations) from one system to another, but also the transfer
of the whole system in a given state from one place to an-

other. In other words, fermions can also undergo nonlocal
tunneling between distant nodes of a quantum network.

Recent theoretical advances in high-efficiency state
transfer rely on protocols that ensure resonance between
the common frequency of the sender and the receiver (at
the endpoints of a network) and a single normal mode
of the DB [11–13]. Such a strategy leads to a three-
body Hamiltonian —taking into account the sender, the
receiver, and the “mathematical” system associated with
the selected normal mode of the DB— which governs the
perfect state transfer in the case of ideal networks. For
nonideal networks, the perfect state transfer gives way
to a process whose nonunity fidelity can be optimized
through the above-mentioned nonlocal tunnelling mech-
anism [8,10], ensuring that the state goes directly from
the sender to the receiver without populating the non-
ideal DB. As demonstrated in refs. [8,10], this mechanism
works by tuning the degenerate sender and receiver out
of resonance with all the DB normal modes, thus leading
to an effective two-body (tunneling-like) Hamiltonian and
causing the effects of incoherence in the DB to be sub-
stantially weakened. We finally stress that, apart from
state transfer, there are proposals for the implementation
of long-distance quantum gates, particularly those capable
of generating entanglement between remote qubits [14,15].
Another proposal, based on an ideal spin chain data bus,
has also been advanced by which the state of a sender can
be transferred to one of different receivers, depending on
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both the frequency tuning between sender and receivers
and the coupling strengths between them and the data
bus channel [16].

The present study aims to extend the goals of refs. [8,10]
to the simultaneous transfer and processing of parallel
data between remote multi-branch nonideal QCs. Thus,
instead of transferring a single state to a distant node in a
network, we now proceed to transfer a set of output states
of a QC to the corresponding inputs of another, remote,
QC through a realistic nonideal DB. In fig. 1 we illustrate
the process by sketching two distant QCs connected to
each other through a DB, here assumed to be the (sim-
plest) linear network of N coupled systems of natural fre-
quencies ωi (i and j run from 1 to N from here on). We are
assuming that the degenerate output-input channels are,
somehow, tuned to frequencies �� (with � running from
1 to M), each slightly out of resonance with a given DB
normal mode Ωi. These detuned normal modes are thus
exploited to induce a Raman-like coupling between the
ends of each output-input channel, enabling the circuits to
exchange information without effectively exciting the DB.
By taking advantage of such a nonlocal tunnelling mech-
anism [8,10], we thus demonstrate that as many states as
the M ≤ N nondegenerate and sufficiently widely spaced
DB normal modes can be simultaneously transferred with
high fidelity between the remote circuits.

The network model. – As in ref. [10], our develop-
ment applies to networks of bosonic and fermionic sys-
tems, such as networks of interacting resonators [17,18],
coupled trapped ions [19], optical lattices [20,21] and
spin chains [22], assuming in this last case the applica-
tion of the Jordan-Wigner fermionization technique. The
Hamiltonian governing the whole network is given by
H = HDB +HO/I +H�, where

HDB =
N∑

i,j=1

A†
iHijAj

represents the DB, whose coupled components are
expressed by the annihilation (creation) operators
{Am} ({A†

m}) and, although only the nearest-neighbor
couplings are shown in fig. 1, we address here the gen-
eral case where each DB component interacts with all
others, with strengths ζmn; any particular topology fol-
lows by an appropriate choice of the parameters defining
the Hamiltonian Hij = ωiδij + ζij(1 − δij). The set of
M output-input channels, described by the annihilation
(creation) operators {O�} and {I�} ({O†

�} and {I†
� }), as

well as their respective couplings, of strengths λ�, to the
first and the N -th DB components, are modeled by the
Hamiltonian

HO/I =
M∑

�=1

[
��(O†

�O� + I†
� I�)

+λ�(O†
�A1 + I†

� AN + H.c.)
]
.

Finally, under the realistic assumption that all the systems
enrolled on our network are coupled to their respective
reservoirs, with coupling strength γ, the interactions are
modeled by the Hamiltonian

H� =
∑
i,k

[ωikc
†
ikcik + γi(Aic

†
ik + H.c.)]

+
∑
�,k

{
ω�kc

†
�kc�k + γ�

[
(O� + I�) c

†
�k + H.c.

]}
,

where the k-th mode ωqk of the q-th reservoir (q =
i, �) is described by the annihilation (creation) operator
cqk (c†qk). Aiming to derive the network master equa-
tion, we diagonalize HDB by applying the transformation
Λi =

∑
j T

−1
ij Aj , where the coefficients of the j-th col-

umn of the orthonormal matrix T (T−1 = Tᵀ) define the
eigenvectors associated with the eigenvalues Ωi [18]. After
getting rid of the degrees of freedom of the reservoirs, we
obtain the network reduced density operator

ρ̇ = −i[H̃, ρ] +
∑

i

(Γi/2)([Λiρ,Λ
†
i ] + [Λi, ρΛ

†
i ])

+
∑

�

(Γ�/2)([O�ρ,O†
� ] + [O�, ρO†

� ])

+
∑

�

(Γ�/2)([I�ρ, I†
� ] + [I�, ρI†

� ]), (1)

where Γi and Γ� stand for the damping rates of the
i-th DB normal mode and the �-th output-input chan-
nel. The Hamiltonian H̃ = H̃DB + H̃OI sums the terms
H̃DB =

∑
i ΩiΛ

†
iΛi and H̃OI =

∑M
�=1{ω�(O†

�O� + I†
� I�) +

λ�

∑N
i=1[(T1iO†

� + TNiI†
� )Λi + H.c.]}, the latter describing

the coupling of each of the M output-input channels to all
the DB normal modes. Under the assumption of the weak-
coupling limit: λ�, ζij � ωi, ��, where all the couplings are
significantly smaller than the frequencies, we have disre-
garded the cross-decay terms from eq. (1), which enable all
the network components to lose excitation through each
other [18].

Effective couplings between the output-input
channel ends. – To engineer an effective interaction be-
tween the corresponding outputs and inputs of the two
QCs, we first adjust each channel end (��) to be disper-
sively coupled to a single normal mode (Ωj), or to a set of
p-fold degenerate normal modes (Ωp

j ), thus being far out of
resonance with all other modes Ωi, such that

∣∣Ωp
j − Ωi

∣∣ �
λ. In both cases, the condition

√
n̄�λ�/Δ� � 1 must be

satisfied (n̄� being the mean excitation of the �-th output
state and Δ� = |Ωj −��|), while the coupling strengths
λ� must be much smaller than those between the DB com-
ponents ζij , i.e. λ� � ζij . Otherwise, the excitation of the
state to be transferred would populate the DB, even under
a large detuning Δ�. The above restrictions allow us to
eliminate the DB variables adiabatically [23], rendering,
up to the second order of the smallest network parame-
ters λ�, the equation for the reduced density operator ρOI
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Fig. 1: A network for state transfer by nonlocal tunneling assuming symmetric QCs.

describing the dynamics of all the output-input channel
ends:

ρ̇OI = −i [Heff, ρOI]

+
∑

�

(Γ(O)
� /2)([O�ρOI ,O†

� ] + [O�, ρOIO†
� ])

+
∑

�

(Γ(I)
� /2)([I�ρOI , I†

� ] + [I�, ρ
†
OII†

� ]), (2)

where the Hamiltonian

Heff =
∑

�

χ�(O†
�I� + O�I†

� ), (3)

describes the effective couplings between the M output-
input pair, with strengths χ� =

∑
p λ

2
� |T p

�1T
p
�N |/Δ�, T

p
�1

and T p
�N being the eigenvectors associated with the p-

fold degenerate normal mode Ωp
� . Therefore, apart from

the adiabatic elimination of the DB variables, we have
also arranged the network parameters for the output-
input channels not to interact with each other. We
stress that Heff is restricted to networks where N �
Δ�/

√
n̄λ�, since its third-order correction is proportional

to the factor Nλ3
�/Δ

2
� which has to be much smaller

than λ2
�/Δ�. Regarding the dissipative mechanisms of

all the (adiabatically eliminated) DB elements, they
are taken into account through the effective damping
rates associated with each output-input pair, given by
Γ(O)

� = Γ� + Γj(λ2
�/Δ

2
�)

∑
p(T

p
�1)

2 and Γ(I)
� = Γ� +

Γj(λ2
�/Δ

2
�)

∑
p(T

p
�N)2 which, like χ, depend on the DB

topology. The decay rate Γj of the j-th normal mode
which is dispersively coupled to the �-th pair of output-
input ends is the one that takes place at the effective
damping rates Γ(O)

� and Γ(I)
� , and its contribution is ex-

ceedingly small (λ�/Δ� � 1), owing to the tunneling na-
ture of the output-input couplings. Finally, we note that
the Lindblad form of the superoperator in eq. (2) follows
from the condition that the DB constituents are initialized
in their ground states. Otherwise, with an initially excited
DB, we end up with additional temperature-like Lindblad
terms, apart from correction (related to the DB), added
to the Josephson-like structure in eq. (3).

Effective decay rates, fidelity and transfer times.
– From here on we assume the particular case of a lin-
ear (first-neighbor coupling) degenerate DB whose compo-
nents all have the same natural frequency ω and damping
rate Γ. We also assume equal coupling strengths ζ be-
tween the DB elements, in the regime where λ� � ζ � ω,

adopted both to engineer the master equation (2) and
to allow analytical results. Finally, equal damping rates
are also assumed for all the output-input channel ends,
so that Γ� = Γ̃. With these restrictions on the pa-
rameters, we obtain the attenuated effective decay rates
Γ(O)

� = Γ(I)
� ∼ Γ̃ + Γ(λ�/Δ�)2, while the excitation of the

DB, TrBD(ρDB

∑
i Λ†

iΛi) ≈ ∑
�(Nn̄�λ

2
�/Δ�ζ)t, confirms

that this channel is only virtually excited under the ap-
proximations used to obtain Heff (see below).

By tracing out the degrees of freedom of the QC1 out-
puts from the solution of eq. (2), we obtain the density
operator for the inputs ρI(t) and, consequently, the fi-
delity for the state transferred to the �-th input F�(t) =
TrI [ρI(t)|ψ�

I(t)〉〈ψ�
I(t)|], where |ψ�

I(t)〉 stands for the state
transferred to the �-th input under ideal conditions, which
makes it exactly the same as the state coming from the
�-th output at t = 0, i.e., |ψ�

I(t)〉 ≡ |ψ�
O(0)〉. From the

maximization of F�(t), we derive the transfer time τ� =
(1/η�) cot−1(Γ/4η�) ≈ π/2η�, where η� = χ�

√
1 − (C�/4)2

is the renormalized output-input coupling strength, which
depends on the cooperativity parameter C� = Γ(O)

� /χ� ≈
Γ/Δ� + Γ̃Δ�/λ

2
� [10] balancing the cost of the dissipation

rate against the benefit of the effective output-input cou-
pling strength. Note that with τ� ≈ 1/χ� we obtain, as-
suming ζ ≈ Δ�: TrBD(ρDB

∑
i Λ†

iΛi) � ∑
� n̄�/λ�.

Validity of the engineered master equation. – To
demonstrate the simultaneous transfer of a set of out-
put states from a QC to the corresponding input states
of another remote QC, we next consider the case where
M = 5 outputs are found to be Schrödinger-cat–like states
|ψ�

O(0)〉 = N±(|α�〉 ± | − α�〉). So as to use typical val-
ues from current experiments, we assume that the DB
and the outputs and inputs of the QCs to be connected
are composed of arrays of microcavities coupled by optical
fibers [17]. The condition for dispersive coupling between
the output-input channels and the DB normal modes can
be fulfilled by first setting N and then adjusting the gap
between the fibers and the microcavities so as to engi-
neer the strength λ� � Δ�/N . Fixing N = M = 5, with
ζ = 106 s−1, and working in the microwave region with
ω = 109 s−1, we next assume equal coupling strengths
λ = 105 s−1 between the QCs and the DB to derive the
normal modes Ωj = {109 + 2 × 106 cos[jπ/3]} s−1, en-
abling us to adjust the frequencies �� in order to obtain
the same detuning Δ0 = |Ωj − ��| = 107 s−1 between
all the output-input channels and their corresponding DB
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Fig. 2: Plot of the fidelity F(τ ) vs. the scaled time τ = t/τ�, assuming |α�|2 = 5, as computed from (a) the full (2) and (b) the
effective (1) master equations.

normal modes. Finally, we choose high-finesse cavities for
the output-input channel ends, with Γ̃ = 1 s−1, coupled to
ordinary low-Q DB cavities, with Γ = 104 s−1.

Adopting the above regime of parameters, in fig. 2(a) we
plot the fidelity F(τ) vs. the scaled time τ = t/τ�, which
turns out to be the same for all output-input channels,
since λ� = λ. Assuming |α�|2 = 5, we find that even after
ten consecutive transfers of the output states to the in-
puts, which takes the time interval τ = 20τ� = 20πΔ�/λ

2,
the fidelity F�(τ) ≈ (1 + e−10π|α�|2C�/2)/2 ≈ 0.92 is still
considerably high since, for the parameters given above,
the cooperativity C� ≈ 10−3 is very small.

In order to analyze the validity of the engineered inter-
action (3), we plot in fig. 2(b) the fidelity F(τ) as com-
puted from the master equation (1) under the regime of
parameters specified above for a microcavity array, which
justify the effective coupling (3). We see that the two
plots in figs. 2(a) and (b), generated by eqs. (2) and
(1), respectively, are very close for the first few swap
operations and, even after τ = 20τ�, the fidelity is still
around 0.85, thus confirming the accuracy of the whole
set of approximations carried out. Evidently, by adopt-
ing a more stringent regime of parameters, we could get
a much better agreement between the effective and real
dynamics.

We observe that high rates of fidelity are still achieved
when the DB components are assumed to be initially ex-
cited, or the coupling between them and their natural fre-
quencies show some degree of randomness. With the same

parameters as in fig. 2, in fig. 3(a) we plot the fidelity (1)
when each component of the DB is initially in a coherent
state β = 1. When this plot is compared with that in
fig. 2(b), it is clear that the first cycles of state transfer
and recurrence are hardly affected by the initial excitation
of the DB, the fidelity at τ = 20τ� being 0.8. Also with
the same parameters as in the above cases, in fig. 3(b),
we plot the fidelity (1) when ζ has random values dis-
tributed uniformly within the interval [0.8, 1.2] × 106 s−1.
Again, despite the significant range of the random cou-
pling strength, the fidelity is only weakly affected, leading
to about the same value as that from the real dynamics,
thus demonstrating the robustness of our protocol against
experimental fluctuations. One difference between this
latter case and the others is that, as expected, the trans-
fer time is affected by the inhomogeneity of the couplings
between the DB components.

Additional effective interactions and logic opera-
tions. – It is straightforward to engineer additional effec-
tive interactions from the network scheme proposed above.
For example, assuming R degenerate output–input pairs,
such that �1 = �2 = · · · = �R = �, eq. (3) is substituted
by

Heff =
R∑

�′=1

R∑
�′′=1

χ�′�′′
[
O†

�′ (O�′′ + I�′′) + H.c.
]

+
M∑

�=R+1

χ�(O†
�I� + H.c.), (4)
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Fig. 3: Plot of the fidelity F(τ ) vs. the scaled time τ = t/τ�, computed from the full master equations (2), when each component
of the DB is initially in a coherent state β = 1 (a), and when ζ has random values distributed uniformly within the interval
[0.8, 1.2] × 106 s−1 (b).

with χ�′�′′ =
∑

p λ�′λ�′′ |T p
�′1T

p
�′N |/Δ�′ , which enables

us to generate n-bit quantum logic gates and to pre-
pare entangled cluster states. A method for achieving
a two-qubit entangling gate between arbitrary distant
qubits in a network was recently proposed using uni-
form cold-atom chains [15]. Assuming that all the out-
puts (inputs) are coupled to the DB components with
the same strength λ� = λ, and starting with a state
in which only one output contains a single excitation
while all the others are in the vacuum state, then after
the interaction time χτ = π/4, we reach the W state∑2R

�̃=1 eΦ� |δ�̃1, . . . , δ�̃R, δ�̃,R+1, . . . , δ�̃,2R〉/√2R [24], where
the first R positions in the product state refer to the out-
puts while the last R refer to the inputs. Apart from phase
factors, this W state is thus composed of all the totally
symmetric states involving 2R− 1 zeros and 1 excitation;
for R = 2, we have (|1000〉− i|0100〉− |0010〉− i|0001〉)/2.

Considering the case where the output-input pairs are
two-level systems described by the Hamiltonian (3), and
assuming that laser pulses are used to rotate the output-
input pairs, we may engineer, at the transfer time τ�, the
evolution operator

Ueff =

⎛
⎜⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 eiϕ

⎞
⎟⎟⎟⎠ ,

which can be used, by adjusting the laser parameters sup-
plying the phase factor ϕ, to implement long-distance

two-bit universal quantum gates (with the output-input
pairs), apart from performing the discrete quantum
Fourier transformation of output to input states [25].

Finally, in the case where all output-input pairs are
degenerate two-level systems (�� = �) with λ� = λ, it
is easily verified that interaction (4) reduces to the sim-
ple form Heff = χS+S−, with S+ =

∑R
�=1(O†

� + I†
� ) and

S− =
∑R

�=1(O� + I�), which has been engineered in spa-
tially confined atomic and spin samples. In our network,
in contrast, the inputs are spatially distant from the cor-
responding outputs and direct manipulation of each net-
work node is assumed. The interaction S+S− can be used
to generate a plethora of states, such as entanglements,
Schrödinger cats and spin-squeezed states [26].

We have advanced a proposal for the simultaneous
transfer of a set of states between remote quantum cir-
cuits through a single realistic nonideal DB. The protocol
applies to networks of bosonic and fermionic systems and
can be used equally for the preparation of entangled states
and for performing logic operations between remote QCs.
The tunneling nature of the output-input couplings en-
ables the high-fidelity transfer of the whole set of output
states of a QC to the inputs of another remote QC, as well
as the high-fidelity implementation of logic operations be-
tween these channel ends. Regarding the sensitive issue
of how to tune the degenerate output-input channels to
the vicinity of the DB normal modes, i.e., the engineering
of the required colored output-input channels, we mention
that frequency-tunnable resonators have recently been re-
alized experimentally [27].
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