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Pitting corrosion is difficult to detect, predict and design against. Modeling and simulation can help to
increase the knowledge on this phenomenon as well as to make predictions on the initiation and progres-
sion of it. A cellular automaton based model describing pitting corrosion is developed based on the main
mechanisms behind this phenomenon. Further, a sensitivity analysis is performed in order to get a better
insight in the model, after which the information gained from this analysis is employed to estimate the
model parameters by means of experimental time series for a metal electrode in contact with different

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the forms of corrosion that can be identified based on the
morphology of the corroded metal is pitting corrosion [1]. This
form of localized corrosion is restricted to small areas and can be
recognized by the appearance of small holes on the metal surface
as shown in Fig. 1 [2,3].

The first step in the pitting corrosion process is the passivity
breakdown and the initiation of a localized attack, which can be
brought about by various mechanisms [4,5]. Firstly, the environ-
ment of the metal can possess several critical conditions leading to
the breakdown of the film in small areas, while preventing dissolu-
tion of the entire surface cover [6]. Secondly, the breakdown of the
passive film can occur due to special features of the cover itself. Films
are generally crystalline or get crystalline with time such that local
thinning mechanisms, related to the nanostructure of the barrier
layer that consists of nanograins separated by grain boundaries,
render these regions susceptible to the pit nucleation process [4].
Besides crystalline grains in the passive film, other point defects
are assumed to be electrons, holes, and oxide vacancies [7]. Finally,
local depassivation can also be promoted by the presence of impuri-
ties or irregularities on the metal surface. All metals or alloys have
some physical or chemical inhomogeneities that make them more
susceptible to attack in aggressive environments compared to the
remaining surface [8]. The chemical composition of the surface will
affect the protective properties of passive films more severely than
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physical defects in the film [8]. These chemical inhomogeneities
can be boundaries between the metal matrix and inclusions or be-
tween second phase precipitates [9]. Therefore, pits can nucleate
at grain boundaries [8], on the grains itself [ 10], at mechanical dam-
ages [11], in heat-affected weld zones [12], dislocations [13] and at
defects orinclusions (e.g. MinS, oxides, sulfides, silicates, precipitates
of carbides and carbonitrites) in the microstructure of many metals
or alloys [14]. When the pitting corrosion is promoted by the pres-
ence of inclusions in the metal surface [8,9], the shape of the pits
can be modified by them as shown by Vignal et al. [14] and Gahari
etal.[15]. In the latter, for example, the authors showed that the ori-
entation of a MnS inclusion can be important for the pit evolution.

After the pit initiation in these regions, the acidity inside the pit
is maintained by the spatial separation of the cathodic and anodic
half-reactions, which creates a potential gradient and electromi-
gration of aggressive anions into the pit [16]. As pit growth pro-
gresses, different solution compositions develop inside the cavity
and the consequent voltage (IR) drop along the metal/electrolyte
interface dictates that the deeper the pit is, the lower the pit
growth rate is [17-19]. In addition, the formation of a lacy metal
cover over a growing pit could occur. This cover provides a
diffusion barrier which stabilizes the pit growth since it keeps
the bottom of the pit in active dissolution [20].

Distributions and characteristics of pitting sites on metal sur-
faces have been determined through microscopic inspection
[21,22]. The metal surface apparently has a fixed number of these
inclusions, i.e. sites for pit nucleation, as observed in recent works
by Punckt et al. [21] and Zimer et al. [22]. The absence of pit
creation at close distance of already existing pits is another issue
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Fig. 1. Pitting corrosion with indication of anodic and cathodic half-reactions.

that is studied. Reuter and Heusler [13] showed that the probabil-
ity of finding no pit decreases exponentially with the area around
an active pit. This produces an exclusion zone of a few pm around
each active pit in which new pits cannot be nucleated [13].
Gonzalez-Garcia et al. [23] detected anodic and cathodic current
transients on 304 grade austenitic stainless steel by scanning
electrochemical microscopy (SECM) measurements. The microscope
tip, set to detect the Fe? in the anolyte from the metastable pits,
detects the reduced background of cathodic current after the anodic
transient associated with the pit itself.

A better understanding of the pitting corrosion phenomenon is
necessary to combat its destructive effects [1,24]. Even a small pit
with minimal overall metal loss can lead to the failure of an entire
engineering system because of others corrosion types that can
stem from pitting corrosion such as stress corrosion cracks
[8,25,26]. Therefore, pitting corrosion has been widely studied for
many years. Nevertheless, some aspects of these phenomena re-
main unclear. Modeling and simulation enables us to understand
and predict the nature and intensity of corrosion, eliminates the
need for difficult experimental measurements of corrosion under
different electrochemical conditions and allows for extrapolating
over longer time scales and to other physical conditions. However,
the modeling of the corrosion phenomenon is challenging due to
its complex nature and the involvement of many variables and
consequently up till present, no satisfactory, validated models exist
[17].

In the second half of the 20th century, initial corrosion models,
mostly based on (partial) differential equations ((P)DEs), were used
to describe either the initialization of corrosion [27,28] or the prop-
agation of corrosion [29-31]. Later on, models were introduced
incorporating both steps, more processes such as passive film for-
mation were added and specific models for specific conditions
were developed. Although these models are elaborate, they require
extensive knowledge about the material, its origin and the process,
which poses problems for both their development and more so for
their validation [32]. Therefore, the use of new modeling para-
digms such as artificial neural networks [33], statistical models
[34] and cellular automata (CAs) are being explored [35].

In this paper, a three-dimensional CA-based model describing
pitting corrosion is developed. The use of CAs in the field of corro-
sion is relatively new [36,37], but the number of researchers
employing CAs as well as the knowledge on the subject is growing.
Although many different aspects that influence corrosion, such as
film formation, pH, potential differences and heterogeneous com-
position of alloys, are being explored and are incorporated in CA-
based models, most of them only establish a qualitative resem-
blance between the simulated model output and the real-world
phenomenon, ignoring the importance of a sound model validation
that is a prerequisite to have a model with predictive value
[2,17,19,38-41]. Only very recently, a few authors validated their
CA-based model using time series of data, but with modest success
[42]. Furthermore, CA-based models in literature are usually

two-dimensional, making them unsuited to model the growth of
corrosion pits in the direction of the pit depth and surface
simultaneously [19]. Three-dimensional models could provide
new information about dynamic processes like pit coalescence or
the formation of channels and peninsulas inside the metal.
Nevertheless, the simultaneous study of all factors involved in
pitting corrosion is a complex task to overcome using a single
approach. For that reason, the model introduced in this paper
focuses on mass transport, IR drop, pit initiation, metal dissolution
and cathodic protection, but leaves aspects such as passivation and
bimetallic corrosion with spatially different behavior towards
corrosion, aside for the time being.

In Section 2 of this paper, some background is provided on the
CA paradigm, the experimental set-up through which the data
used in this paper were obtained as well as the construction of
the stochastic 3D CA-based model. The sensitivity analysis and
the parametrization of the developed model form the subject of
Section 3, while the conclusions and the future work are discussed
in Section 4.

2. Material and methods
2.1. Cellular automata

CAs are mathematical constructs in which the space, state and
time domains are discrete as opposed to PDEs in which these three
domains are continuous [43,44]. The ability of CAs to generate a
rich spectrum of sometimes complex spatio-temporal patterns
from relatively simple underlying transition functions has led to
their successful employment in the study of several (a)biological
processes [45-50]. Models based on CAs can be seen as an alterna-
tive to PDE-based models, to provide researchers with a wider
range of modeling tools and, in some complex cases, a solution
to problems encountered with some of the more classical modeling
methods [51,52].

2.1.1. Choice of an appropriate model

Important when developing a model is the choice of method and
particularly the level of description, be it microscopic, mesoscopic
or macroscopic. Microscopic description of the Monte Carlo or
molecular dynamics type are not interesting for pitting corrosion
since this is a rather scarce event on the atomic scale. With the size
of the corrosion pits in the range of 10-100 nm, the time and space
scales of the phenomenon are far beyond the reach of the present-
day atomistic level computations [38]. On the other hand, a macro-
scopic description with classical kinetic equations, normally based
on a system of PDEs, poses the problem that in most cases analytical
solutions of the resulting equations are not at hand. For that reason,
some kind of discretization has to be used to be able to solve the
problem numerically, which unavoidably gives rise to approxima-
tion errors and stability problems [51,52]. Finally, the macroscopic
modeling of electrochemical reactions is unable to capture the sto-
chasticity of the corrosion processes causing that some of the infor-
mation, important to engineers, is not readily available [42]. The
mesoscopic approach is seen as a way to combine the macroscopic
phenomenology with the stochastic character of the processes orig-
inating from the microscopic scale processes [53]. CAs lend them-
selves to construct mesoscopic models that describe the evolution
of metal surface related to stochastic processes while adhering to
a realistic electrochemical point of view. However, it is not the goal
to describe a specific system but rather to analyze how a combina-
tion of a small number of basic processes, very well accepted by
electrochemists, might determine general features.
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Another advantage of employing CA-based models is that they
are so-called gray-box models that stand between white-box mod-
els, which are based on a detailed understanding of the underlying
physical laws and processes, and black-box models, which simply
reproduce the input-output behavior of the system but make no
use of physics or chemistry [42]. Like the black-box models, the
gray-box models are parametric models where the parameters
are learned from data, but the difference with black-box models
is that here the parametric model is motivated by basic physical
ideas instead of simply being selected from a class of universal
approximators. Usually gray-box models are characterized by
smaller parameter sets and the parameters themselves yield some
physical insight into the problem. This approach allows for con-
structing a mathematical model that describes the complex pitting
corrosion phenomenon using the knowledge that is available with-
out the necessity to know the governing processes and equations
exactly.

2.1.2. Paradigm

In this paper, we make use of a homogeneous CA, in which a
single transition function governs the dynamics of all cells. The fol-
lowing definition of a homogeneous 3D CA is relied upon.

Definition 1. (Homogeneous 3D cellular automaton)

A homogeneous 3D cellular automaton C can be represented as

C= (Q,S,S,N, ¢>7

where

(i) G is a three-dimensional grid of cells c.

(ii) S is a finite set of h states, with S C N.

(iii) The output function s yields the state s(c, t) of every cell c at
the tth discrete time step.

(iv) The neighborhood function N determines the neighboring
cells of every cell c, including the cell c itself.

(v) The transition function @ yields the state s(c, t + 1) of every
cell c at the next time step, based on its state and that of its
neighboring cells at the current time step.

For reasons of comprehensiveness, some parts of this definition
will be elaborated here.

Fig. 2. Ordering of the cells of a 3D CA.

Grid G. In this paper, a finite three-dimensional grid consisting
of cubes is used, because it has the most straightforward imple-
mentation and suffices for the purposes of this paper. An indexing
of the cells of a 3D CA is introduced, which is shown in Fig. 2, with
i",j* and k" the number of layers, rows and columns, respectively.
Therefore, i represents the thickness direction of the metal, while
j and k together form the surface. This grid allows for modeling
both the affected metal surface as well as the depth of the corro-
sion pits, both in function of time.

Neighborhood function N. Different neighborhoods can be de-
fined in 3D, the two most important ones being the Moore and
the von Neumann neighborhood. The Moore neighborhood of a cell
cijx comprises those cells that share at least a vertex with ¢;;; and
thus counts 27 neighbors in total (see Fig. 3(a)). The von Neumann
neighborhood is a more restricted neighborhood in which only
those cells that share a face with c;;, are considered as neighbors
giving rise to a total of 7 neighbors (see Fig. 3(b)).

Discrete states. Every cell c;jx has one of the h discrete states
comprised in the set S. As this paper deals with a mesoscopic
description of the corrosion phenomenon, cells are not to be asso-
ciated directly with the individual atoms, anions or cations, but
rather to a homogeneous grouping of the same type of atom. The
latter means that atomic size effects are not accounted for [54],
which is a simple approximation intended to capture the synoptic
effects of pitting corrosion [55,56]. The states of the cells ¢;; of G at
t =0, i.e. s(cijx, 0), constitute the initial condition of G.

Transition function @. The transition function ¢ determines the
state of a cell ¢;ji at the (t + 1)th time step based on the cell’s cur-
rent state and the states of its neighboring cells and is devised as to
mimic, as closely as possible, the physicochemical processes in-
volved in pitting corrosion at a mesoscopic level [38]. The transi-
tion function ¢ that is used in the remainder of this paper is
executed in a stochastic and synchronous manner. The former
means that the application of the transition function @ is subject
to a probability P and will therefore not necessarily be evaluated
at every consecutive time step. This entails that the outcome of a
stochastic CA-based model differs for every simulation. Evaluating
@ in a synchronous manner means that all cells update their state
at the same time ([57]).

2.2. Experimental procedure

2.2.1. Experimental conditions

Pitting corrosion on AISI 1040 steel was performed in a hydro-
gen carbonate solution (0.1 mol dm>) prepared by the dissocia-
tion of NaHCO5; (Merck) in deionized water at pH 8.3. Prior to

(a) (b)

Fig. 3. Neighborhoods of a cell c;;x in a 3D grid: (a) Moore neighborhood and (b)
von Neumann neighborhood.
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data acquisition, the solution was deaerated for 10 min with N,.
The study of the influence of the chloride concentration during
pit initiation and propagation was performed using following
weight percentages: 2.25, 2.5 and 3.5 wt.% of NaCl (JT Backer) in
the solution. Further, cylindrical steel samples (Sanchelli) with a
diameter of 9.5 mm (A = 0.7 cm?) were used as the working elec-
trode (WE). The WEs were previously abraded with sandpaper up
to 2000-grit, polished with diamond paste (1 and 0.25 pm), and de-
greased in acetone for 1 min in an ultrasonic bath. The material
composition is described in a previous paper [22]. As the reference
electrode (RE) and auxiliary electrode (AE), Ag/AgCl/KCl (saturated)
and a Pt wire were used, respectively.

2.2.2. Data acquisition

Two types of electrochemical measurements were performed
with an Autolab model PGSTAT 30, being the open-circuit potential
(Eoc) and chronoamperometric measurements. A homemade flat-
bottom cell, previously described in literature [58], was employed
in these experiments. The use of this cell enables the coupling of
the electrochemical techniques and measurements with in situ
temporal series of micrographs (TSM) obtained with an inverted
optical microscope (OM), brand Opton model TNM-07T-PL. The
software tools Scope Photo” 1.0 and MCDE (AMCAP) were used
for the data acquisition.

In this approach, the E,. was followed up to its stabilization dur-
ing 6000 s. After stabilization, all chronoamperometric measure-
ments were performed for 1800 s with an overpotential (1) of
350 mV more positive than E,.. At the same time, an area of
680 um x 544 pm, i.e. 0.52% of the WE, was recorded using an
acquisition rate of 0.05 and 1 image per second during the
Eo,c and chronoamperometric measurements, respectively. The
optimization of the overpotential # to be applied during the chro-
noamperometric measurements was investigated at a low chloride
concentration of 1.5 wt.%. The value of 350 mV was chosen because
it allows for observation of the first pit nucleation when verifying
the in situ image of the electrode surface. It is noted here that dif-
ferent areas of 680 pum x 544 um of the WE electrode were fol-
lowed in order to assure that this small part of the surface was
representative of the whole process occurring during the measure-
ments. Starting at the center of the WE, where the TSM were col-
lected, the electrode surface was studied towards the corners of
the sample in the orthogonal directions. Thus, several in situ
micrographs were collected for these new positions and they were
compared with the last frame of the temporal series. For each
experimental condition, the pit dispersion in the final frame of
the studied time series was similar to the dispersion of the rest
of the electrode surface, excluding edge effects.

To convert the images (frames) from the TSM into quantitative
information, a procedure previously described in literature [22,59]
was employed. The number of pits and total pit area were obtained
from the in situ TSM. The average pit depth was estimated using a
fraction of the total charge consumed during the pit formation.
This fraction of total charge changes in every frame according to
the pit mouth area observed during chronoamperometric mea-
surements. Finally, a three-dimensional model of pit evolution
based on Faraday’s law was used to calculate the average pit depth
and its evolution over time. Fig. 4(a)-(c) show the number of pits,
the corroded surface area and the average pit depth, respectively,
in function of time and for the different mass percentages of chlo-
ride ions in solution. It is noticed from Fig. 4(a) that a maximum
number of pits is reached for 2.5% chloride in solution instead of
for 3.5%. Although not completely elucidated, the explanation
seems to lie in a shift in corrosion emphasis dependent on the chlo-
ride concentration. At lower concentrations of chloride, more pits
are formed than at higher concentrations, but these pits are
volume-wise smaller. One possible explanation is that the higher

diffusion gradient at higher chloride concentrations forces the
chloride cells more towards the inside of the pits. This explains
that although 3.5% chloride in solution does not yield the highest
number of pits, the total affected surface and the average pit depth
at 3.5% chloride is the highest. More details on the procedure and
data can be found in Zimer et al. [60].

2.3. Model development

In this paper, a stochastic 3D CA-based model describing pitting
corrosion is proposed. A grid G consisting of 151 x 200 x 200 cubes
is used where the top layer, i.e. s(cyk, t), represents the aqueous
solution containing the corrosive agent while the other 150 layers
represent the metal subjected to corrosion. The number of cells is
chosen as such to obtain a small enough grid resolution to prevent
overly sensitive model parameters that result in very fluctuating
solutions from simulation to simulation, while still not resulting
in excessive computation times. Along the j- and k-axes periodic
boundary conditions apply, meaning that the cells of the first
row (column) are considered to be adjacent to those of the last
row (column) to avoid border effects [2]. Along the i-axis on the
other hand, fixed boundary conditions are employed since the
top layer (aqueous solution) and bottom layer (metal) of G do not
physically form an interface and so through these boundaries no
movement is possible. A schematic representation of the grid G is
shown in Fig. 5. The metal part of the grid G, i.e. the bottom 150
layers, represents only a part of the studied electrode surface used
for the data collection to get a resolution fine enough to approxi-
mate the experimental results as well as to avoid excessive compu-
tation times. By presuming Aj and Ak to be 1.24 x 10°° m and
Ai = 1.44 x 107" m, the grid captures one sixth of the total studied
electrode surface area and has a maximum depth large enough to
allow for the maximum average experimental pit depth (see
Fig. 4(c)) to occur. The solution in which the metal electrode is sub-
merged is represented here initially by a single layer wherein chlo-
ride can diffuse. Since the modeling interest lies in capturing the
pitting initiation and propagation processes, in this way the com-
putationally demanding diffusion process is kept to a minimum.

Further, three different discrete states, i.e. S = {water, chloride,
metal}, are discerned. Although the corrosive solution contains
more components than merely water and chloride, here all the
non-reactive components are considered as water since they are
irrelevant for the current modeling purposes. The initial condition
of G is determined by the experimental set-up (see Section 2)
meaning that initially no pits are present in the metal such that
all cells of layer two up to layer 151 of G have state metal at
t = 0. In layer 1, a number of cells is assigned the chloride state
according to the mass percentage of chloride in the solution and
is randomly distributed across this layer, while the rest of the cells
gets assigned the water state.

The transition function @ falls apart into three parts that de-
scribe diffusion, pit initiation and pit propagation, respectively.
For the first part of the transition function, only the cells in the
chloride state are evaluated, since only their movement is both
possible and relevant. Every cell in the chloride state can move
once via diffusion in each time step. The motion dynamics of a cell
in state chloride are simulated by switching the state of the central
cell ¢;j, and the state of the cell in its neighborhood it moves to-
wards. To comply with the law of mass conservation, if more than
one cell in state chloride tries to move to the same cell, none of
them is allowed to move. The complete reaction and diffusion
neighborhood N* employed in this paper is the 3D Moore neigh-
borhood depicted in Fig. 3(a). However, depending on the position
of ¢ijx, N* can be truncated to fit the fixed boundaries of the sys-
tem. Initially, a random neighbor of ¢;; in N* is chosen to move to-
wards after which it is checked whether this cell is in the water
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Fig. 4. Experimental data: (a) number of pits, (b) corroded surface area and (c) average pit depth in function of time for mass percentages of 2.25% (green, circles), 2.5% (blue,
squares) and 3.5% (red, diamonds) of chloride ions in corrosive solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Fig. 5. Schematic representation of the 3D grid.

state and is therefore a viable candidate to move towards. Never-
theless, once pits appear on the surface and grow, a concentration
and potential gradient emerges and chloride will preferably move
(deeper) inside the pits. To capture this, a suction probability
1€10,1] is introduced that indicates whether or not chloride
moves towards the lowest possible position in N* with certainty
or if any free position in N* is chosen at random. Furthermore, since
the diffusion coefficient of chloride in these specific conditions is
not known, At, i.e. the number of seconds corresponding to one
discrete time step of the CA-based model, is set as a model

parameter. The total number of time steps the CA-based model is
denoted t, and is given by Eq. (1):

ty = |200/At). 1)

It is pointed out here that a calibrated value for At will not depend
on the experimental data alone, but also on the values chosen for
Ai, Aj and Ak, since the cell dimensions and the time step can not
be chosen independently and are connected via the diffusion coef-
ficient [39].

The second part of @ is the pit initiation where surface metal
cells, i.e. where s(c,x, t) = metal, get their state changed to state
water or chloride, based on the same ratio as the grid initiation,
with a probability P, through an attack of a cell in the chloride
state. An attack of a cell in the chloride state starts, like the diffu-
sion part of @, by choosing another cell in its neighborhood N* to
direct its attack towards. Firstly, it is checked whether the selected
cell is a surface metal cell. The next step is verifying whether the
cell under attack is not already protected through cathodic protec-
tion. This latter phenomenon occurs when the metal surface
around a newly formed or growing pit becomes negatively charged
(see Section 1) as such preventing the appearance of new pits in
close vicinity of existing pits. The radius of the exclusion zone for
each active pit here is taken as 5 pm, based on previous works
and observations of the in situ images from the metal surface.
Translating this cathodic protection to the grid G, a protection dis-
tance of four cells is taken around any existing pit. Finally, an at-
tack only becomes effective with a probability P, € [0, 1]. From
the experimental data (cf. Fig. 4(a)) a maximal number of pits for
each chloride concentration is deduced and when this maximum
is reached, P, is set to O from that point on, as such preventing
the formation of new pits.

The pit propagation or pit growth, both on the surface as in the
depth, forms the final part of the transition function . As for the
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pit initiation, metal cells get their state changed to water or chlo-
ride, based on the same ratio as the initiation of G, after an attack
by a cell in the chloride state. However, unlike for the pit initiation,
the candidate metal cells for attack are metal cells that are part of
an already existing pit. In this part of @, all chloride cells choose
one of their Moore neighbors at random to attack, and when this
neighbor is a metal cell belonging to a pit edge, this metal is dis-
solved with a probability P,. There is an indubitable IR control of
the current pit growth laws [17,18] and therefore the IR-factor is
incorporated in the CA-based model as a parameter { € [0, 1]. This
parameter is used together with the dissolution probability with-
out potential gradient (i.e. the dissolution probability at the metal
surface) Py, again € [0, 1], to calculate P, in the following manner
[17]:

Pd:Pdo< —%) 2)

with d the depth of the metal cell under attack and d,, the total
depth of the metal layer, i.e. 150 cells. From Eq. (2), it can be seen
that with the IR drop the dissolution probability decreases with
increasing pit depth.

Table 1 gives an overview of the model parameters that need to
be calibrated using the experimental data from Section 2 and Fig. 6
shows a flow chart of the CA-based model.

3. Results and discussion

All code is written in Mathematica 9.0 and simulations are per-
formed on a Dell Optiplex 780 with an Intel Core 2 Quad Q9400/
2.66 GHz, 6 M, 1333FSB processor. Simulation time is dependent
on the parameter setting and ranges for the relevant parameter
settings in this paper from 20 min to 45 min. The Mathematica
source code is available upon request.

3.1. Sensitivity analysis

Sensitivity analysis (SA) has long proven its use in model build-
ing, since often model parameters are uncertain, especially when
modeling complex natural systems [61,62]. It provides model
builders with useful insights into the level of uncertainty contrib-
uted by each parameter, which can be important for research pri-
oritization, decision making during parametrization and reducing
the model complexity by filtering out parameters that have a min-
or effect on the model outcome.

In deterministic models, the outcome for a specific set of
parameters is essentially the same for identical initial conditions.
Stochastic models, like the one used in this paper, on the other
hand, have varying outputs between simulations, even if parame-
ter values and initial conditions are identical [63]. Rather than
comparing two single output values for sensitivity analysis, as is
the case for deterministic models, two distributions of output val-
ues have to be compared. SA for stochastic models is often based
on the mean of the different distributions of output values,
although a better approach also accounts for the shape of the dis-
tributions, for instance by taking into account the variance [62].

Table 1

Overview of model parameters.
Symbol Description Range Unit
1 Suction probability [0,1] -
At Physical time for one discrete time step [0,200] S
Py Pit initiation probability [0,1] -
Pyo Dissolution probability at metal surface [0,1] -
¢ IR drop [0,1] -

Initialize grid

Y

Choose parameter
values

Y

Calculate the number
of time steps, f,

| J

Repeat £, times

Allow chloride to diffuse

Check for possible pit
initiation at metal surface

Check for possible pit
growth at pit edges

Record number of pits,

affected metal surface

and average pit depth
at current time step
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Fig. 6. Flow chart of CA-based model.

Furthermore, since simulations with CA-based models are gener-
ally more time consuming, a screening method for SA is adopted
here because such method has a relatively low computational cost
when compared to other approaches. With screening methods, the
objective is to identify which input variables are contributing
significantly to the output uncertainty, rather than exactly
quantifying sensitivity.

An effective screening method for SA is the variance-based
Elementary Effects (EE) method, where basic statistics are
computed to obtain sensitivity information [64-66]. Here, the
calculation of the sensitivity H, of the model output Y to a single
parameter q, is repeated r times and the mean g, and standard
deviation o, of these r computations are used to assess the impor-
tance of parameter q,. Often it is useful to compute (;, being the
mean of |H,| as it comes at no extra cost to calculate and resolves
the issues encountered with non-monotonic models. The impor-
tance of the different parameters can be assessed graphically using
a (ur, o) plot, with the parameters closest to the origin being the
least influential [67]. Although widely and successfully used in lit-
erature and recently also for stochastic biological models [68], the
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Fig. 7. Screening of the parameters based on the EE method for three data sets: (a) number of pits, (b) corroded surface and (c) average pit depth in function of time for a mass

percentage of chloride ions in corrosive solution of 3.5%.

use of this SA technique for CA-based models is to the authors’
knowledge very limited.

The SA results that follow next are obtained for a mass percent-
age of chloride ions of 3.5%, but uphold for the two other concen-
trations. From Fig. 7(a) it can be concluded that with regard to the
number of pits in function of the time, parameters At and P, are the
most sensitive, since the sensitivity measures for these parameters
are the furthest removed from the origin. This result was expected,
because these two parameters together state the probability of a
new pit appearing at a certain moment in time. Analogously, from
Fig. 7(b) it can be seen that parameters Py and 1 are the ones that
most influence the affected metal surface in function of time. This
again is a logical outcome since Py, is the probability that a metal
cell pertaining to an already formed pit dissolves while 1 dictates
the preference of a corrosive agent to stay in the neighborhood
where it is by random movements or move preferentially towards
the bottom of the existing pit. Finally, Fig. 7(c) shows that the
average pit depth in function of time is clearly most sensitive to
the value of 1, which could also be anticipated.

3.2. Inverse problem solving

3.2.1. Optimization method

The remainder of this section deals with solving the inverse
problem, i.e. retrieving the values of the model parameters from
Table 1, belonging to the observed data from Fig. 4(a)-(c) for each
of the three different chloride concentrations. This comes down to
estimating five parameters, making use of three time series of data
(number of pits, affected surface area and average pit depth). Two
measures of fitness between the observed data and the corre-
sponding simulated time series with the CA-based model are used.
The absolute error (AE) is used between the experimental and sim-
ulated number of pits in function of time, since this is a discrete
measure, and the root mean s