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Abstract This work proposes the application of fractal de-
scriptors to the analysis of nanoscale materials under differ-
ent experimental conditions. We obtain descriptors for im-
ages from the sample applying a multiscale transform to the
calculation of fractal dimension of a surface map of such im-
age. Particularly, we have used the Bouligand–Minkowski
fractal dimension. We applied these descriptors to discrim-
inate between two titanium oxide films prepared under dif-
ferent experimental conditions. Results demonstrate the dis-
crimination power of proposed descriptors in such kind of
application.
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1 Introduction

Morphological material characterization is a very impor-
tant and challenging task throughout Material Science, since
such properties are determinant in the suitability of a given
material to a specific application. Among several materials
studied recently, a great deal attention has been given to pho-
toactive ones, such as titanium oxide. Titanium oxide films
prepared electrochemically can show a wide variation in
their morphology depending on the experimental conditions
in which they are prepared. As an example, the morphology
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can range from self-organized nanoporous [9, 19, 21] up to
nanostructures without pores definition [3, 5]. As described,
many authors have shown that morphology is an important
aspect to be considered in the photoactive properties of TiO2

films [3, 13]. Recently, we have shown that the photoactiv-
ity of TiO2 films prepared by galvanostatic anodization is
strongly affected by the morphology on the early stages of
the anodization process [18]. In [18], we have investigated
the effect of morphology using an Image Analysis Method,
which is based on the computational analysis of visual at-
tributes, such as color, shape, and texture. Among these
attributes, texture is a powerful characterizer for material
analysis. Although the concept of texture has no precise def-
inition, it may be comprehended as the spatial organization
of pixels in a digital image. A physical consequence of this
definition is that this attribute is capable of express charac-
teristics such as luminosity and roughness of a digitalized
object. In this way, it allows a robust description and dis-
crimination of material images, particularly TiO2 samples
used in this study, which show few or no information about
the pore diameter, but have a rich morphology related to tex-
ture information.

Unlike conventional textural data, natural textures do not
present any evident quasiperiodic structure, but persistent
random patterns [11]. Among the approaches employed for
texture analysis, fractal methods are proposed as the best so-
lution [12]. These methods, based on fractal dimension [14]
or multifractal spectrum [10], can measure the complexity
of an object texture, which corresponds to the shape irreg-
ularity, also related to the spatial occupation of an object.
Therefore, fractal measurements are capable of quantifying
the texture homogeneity, allowing a comparison among their
information and the consequent discrimination of original
materials. Using as example the materials here investigated,
some authors [16, 20] have shown that the fractal dimension
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of TiO2 films can also be correlated to photoactivity proper-
ties of these materials. However, in that papers, the analysis
is valid for very regular morphologies, showing deviations
when more complex surfaces are considered.

Although the fractal dimension is a good descriptor to
characterize a texture image, it is inefficient in applica-
tions involving the discrimination of a large amount of ob-
jects. In fact, it is easy to find objects with different as-
pects presenting the same fractal dimension [12]. In order
to solve this drawback, the literature presents approaches
which extract a lot of descriptors based on fractal geometry,
such as Multifractals [10] and Multiscale Fractal Dimension
(MFD) [4, 8, 15]. In the literature, Backes et al. [1] applied
MFD in texture analysis employing volumetric Bouligand–
Minkowski MFD (VBMFD) to extract a set of descriptors
from natural textures with very good results. VBMFD is
based on the intensity image mapping onto a 3D surface.
In the following, this surface is dilated by a variable radius r

and the volume V (r) is calculated for each radius. This ex-
pansion process gives a precise measure of the pixel arrange-
ment. As the radius r grows, an interaction among dilation
spheres is observed, interfering in V (r) value. Therefore,
these values capture changes in spatial distribution of tex-
tures along different scales. In this way, VBMFD uses V (r)

values as descriptors for a texture, capable of distinguishing
different textures with their different spatial arrangement.

Considering the exposed above, in this work, it is pro-
posed the use of VBMFD descriptors to discriminate among
nanoscale TiO2 films prepared electrochemically using two
different experimental conditions and characterized by field
emission gun scanning electron microscopy (FEGSEM). In
order to demonstrate the efficiency of the proposed method,
this work obtains VBMFD descriptors from these films.

2 Materials and Methods

2.1 Fractal Theory

Since its introduction by Mandelbrot [14], the literature
presents a lot of works using fractal theory to describe and
discriminate several kinds of materials [16, 20]. Most of
them use fractal dimension as a descriptor of the original
samples. This is explained by the fact that fractal dimension
measures the complexity of the object, related to the irregu-
larity or the spatial occupation of that object. This property
is strongly correlated to physical important properties.

2.1.1 Fractal Dimension

The fractal dimension [14] is the most commonly used mea-
sure to characterize a fractal object. Despite its importance,
we cannot find a unique definition for this concept. The most

ancient definition corresponds to the Hausdorff–Besicovitch
dimension.

If X ∈ �n is a geometrical set of points, the Hausdorff–
Besicovitch dimension dimH (X) is given by:

dimH (X) = inf
{
s : Hs(X) = 0

} = sup
{
Hs(X) = ∞}

, (1)

where Hs(X) is the s-dimensional Hausdorff measure,
given by:

Hs(X) = lim
δ→0

inf

{ ∞∑

i=1

|Ui |s : Ui is a δ-cover of X

}

, (2)

where | · | expresses a diameter in �n, that is, |U | =
sup |x − y| : x, y ∈ U .

Otherwise, the Hausdorff–Besicovitch definition applica-
tion could be impracticable in many real situations. This is
the case of discrete objects represented in a digital image,
as those studied here. For such applications, we have an al-
ternative definition of fractal dimension, which is a gener-
alization from the topological dimension. Thus, the fractal
dimension D is provided by

D(X) = lim
ε→0

log(N(ε))

log( 1
ε
)

, (3)

where N(ε) is the number of objects with linear size ε re-
quired to cover the whole object X [7]. More generically,
N(ε) may be considered a measure which varies according
to the scale ε. Such measure is characterized by a power-
law relation with the scale [17]. A lot of fractal dimension
methods were developed by using distinct measures, such as
Bouligand–Minkowski [7], box-counting [7], Fourier [17].
Here, we are focused on the Bouligand–Minkowski fractal
dimension.

2.1.2 Bouligand–Minkowski

The original definition of Bouligand–Minkowski fractal di-
mension dimB(X) depends on a symmetrical structuring el-
ement Y :

dimM(X,Y ) = inf
{
τ,measM(X,Y, τ) = 0

}
, (4)

where measM is the Bouligand–Minkowski measure:

measM(X,Y, τ) = lim
r→0

V (∂X ⊕ rY )

rn−τ
, (5)

where r is the radius of Y and V is the volume of the dilation
between Y and the boundary ∂X of X.

By using neighborhood techniques, we may find a simpli-
fied version of this dimension, which eliminates the explicit
dependence from Y :

dimM(X) = lim
ε→0

(
DT − logV (X ⊕ Yε)

log ε

)
. (6)

For the cases such as those studied here, when X ∈ �3, the
topological dimension is DT = 3 and Yε is a sphere with
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Fig. 1 Two textures whose
surfaces present the same fractal
dimension (FD = 2.014) and
their multiscale fractal
descriptors D(r), where r is the
descriptor index

diameter ε. For each value of ε, each point in X is dilated
by Yε and the number of points inside the dilated structure
is the dilation volume V .

2.2 Proposed Method

A significative drawback of fractal dimension is that it is
only a unique real number. Therefore, it is possible to find
a great number of objects which despite its same fractal di-
mension present appearance completely diverse. This is ex-
emplified in Fig. 1 using textures from Brodatz data set [2].
The authors in [15] proposed the Multiscale Fractal Dimen-
sion technique to solve this issue. In MFD, the fractal dimen-
sion is calculated for the object observed under different spa-
tial scales and each value is used as a descriptor for the ob-
ject. In this work, we propose the analysis of nanoscale FEG
images by applying a multiscale approach to the Bouligand–
Minkowski fractal dimension.

Initially, we map the image Img ∈ [1 : M] × [1 : N ] → �
onto a three-dimensional surface

Surf = {
i, j, f (i, j)|(i, j) ∈ [1 : M] × [1 : N ]}, (7)

such that:

f (i, j) = {1,2, . . . ,max_gray}|f = Img(i, j), (8)

where max_gray is the maximum pixel intensity.
In the following, the surface is dilated by a variable ra-

dius r , as depicted in Fig. 4. Then the dilation volume V (r)

for each dilation radius is calculated. The value of V (r) also
corresponds to the number of points with a distance at most
r from the object. Therefore, the exact Euclidean distance
transform (EDT) [6] becomes a powerful and efficient tool
for this calculus.

In the three-dimensional space, EDT may be defined as
the distance of each point in the space to a subset of it. In our
case, this subset is the surface and the EDT for each point
outside Surf is given by

EDT(p) = min
{
d(p,q)|q ∈ Surf c

}
, (9)

where d is the Euclidean distance.

In particular, in exact EDT, the distances present discrete
values E:

E = 0,1,
√

2, . . . , l, . . ., (10)

where

l ∈ D = {
d|d = (

i2 + j2)1/2; i, j ∈ N
}
. (11)

The dilation volume is given through

V (r) =
r∑

i=1

Q(i), (12)

where

Q(r) = (x, y, z)|gk(P ) −
[

gr(P ) ∩
r−1⋃

i=0

gi(P )

]

, (13)

such that

gr(P ) = {
(x, y, z)|(x − Px)

2

+ (y − Py)
2 + (z − Pz)

2}, (14)

where

P = (x, y, z)|f (x, y, z) ∈ Surf. (15)

The authors in [1] propose the use of values V (r) as
descriptors for texture. Such technique is named Volumet-
ric Bouligand–Minkowski Multiscale Fractal Dimension
(VBMFD). In that work, the authors apply this technique to
the analysis of plant leaves, achieving interesting results. It
is important to stress out that V (r) is directly related to the
Bouligand–Minkowski dimension for maximum radius r .
Besides, each radius corresponds to an observation scale,
from further (greater radius) to closer (smaller radius).

This work proposes the application of VBMFD descrip-
tors for the analysis of two TiO2 samples prepared under
different experimental conditions. The goal is to discrimi-
nate between the samples based on images extracted from
different regions of each film.
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Fig. 2 Texture images extracted
from titanium oxide under two
different conditions (above and
below)

Fig. 3 Texture mapped onto a
surface. (a) Original texture.
(b) Three-dimensional surface

Fig. 4 Dilated surfaces with
different radii. (a) Original
surface, (b) Radius 2,
(c) Radius 5, and (d) Radius 10

2.3 Sample Preparation

The samples were prepared as follows. A titanium sheet
(Alfa Aesar, 99.99%, 0.25 mm thick) with an exposed area
of 1 cm2, and two platinum sheets were used as working
and counter electrodes, respectively. Before the anodization

process, the working electrode was polished with #1000 SiC
and then with #1200 SiC emery paper followed by vigorous
washing with deionized water.

The experiments were carried out under galvanostatic
conditions with a home-made current source, measuring the
potential difference between working electrode and counter
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electrode with an HP 34410A multimeter coupled to a
computer by an in-house software routine developed with
HP-VEE 5.0 software. The two samples investigated were
prepared in oxalic acid (sample 1 in a concentration of
0.05 mol L−1, and sample 2 in 0.5 mol L−1) applying a con-
stant current density of 10 mA cm−2 and 20 mA cm−2 (sam-
ple 1 and sample 2, respectively) on the working electrode.
The temperature was kept constant at 10 °C during the an-
odization of both samples.

After the preparation, the samples were morphlogically
characterized using a field emission gun scanning electron
microscope (Supra35–Zeiss). From both samples, we have
extracted ten images from different regions of the material
in order to collect a representative amount of data.

3 Results

The fractal descriptors were used for the discrimination of
two TiO2 films prepared under different experimental con-

Fig. 5 Descriptors curves from each texture image. Solid curves cor-
respond to sample 1. Dashed ones correspond to sample 2

ditions. From each sample, we have extracted two micro-
graphs, represented in Fig. 2.

Initially, we apply the transform which maps the intensity
image onto a surface, as illustrated in Fig. 3.

Next, the surface is dilated by a variable radius r , as de-
picted in Fig. 4. The conventional Bouligand–Minkowski di-
mension technique is extracted from the curve log(V (r)) × r ,
in which, V (r) is the dilation volume. Here, the descriptors
obtained by the VBMFD technique are provided by

D′(r) = log
(
V (r)

)
. (16)

In order to eliminate redundancies from descriptors
D′

k(r) of the kth image, the following operation was per-
formed:

Dk(r) = D′
k(r) −

n∑

i=1

D′
i (r)/n, (17)

where n is the total number of images in the dataset and
Dk(r) is the used descriptor.

Figure 5 shows the descriptor curves for each image from
TiO2 samples. Each line aspect (solid and dashed) corre-
sponds to a sample prepared in a different experimental con-
dition.

It is noticeable that descriptors curve aspects discriminate
strongly the materials. We do not observe any interlacement
among curves from different conditions. The whole graphic
reflects a high interclass variability and a low intraclass vari-
ation in descriptors. Such result is in accordance to the pixel
arrangement nature, measured through fractal descriptors.

Moreover, we noticed the complex shape of each curve,
reflecting the richness of information expressed in the de-
scriptors. We observed a clear improvement in the descrip-
tion compared to the classical fractal dimension.

Figure 6 shows the distribution of two statistical impor-
tant scores of fractal descriptors: from Principal Component
Analysis (PCA) and Canonical Correlation Analysis (CCA).

Fig. 6 Distribution of correlation scores. (a) Principal Component Analysis. (b) Canonical Correlation Analysis
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While PCA plot measures the dispersion of whole
dataset, CCA measures the correlation among data from a
same material. Both graphics show a cluster of points (cor-
responding to the 2 main scores) in each material conditions,
showing again the discrimination power of fractal descrip-
tors.

4 Conclusions

In this work, we proposed the application of fractal descrip-
tors to the discrimination of materials under different exper-
imental conditions. We obtained the descriptors by applying
a multiscale approach to the fractal dimension estimation of
texture images extracted from the material.

The curves of descriptors showed a high accuracy in the
discrimination. This result demonstrated the power of the
proposed technique in the modelling of materials. It also
showed the validity of materials analysis through compu-
tational texture analysis.

Acknowledgements J.B. Florindo acknowledges support from
CNPq (National Council for Scientific and Technological Develop-
ment, Brazil) (Grant #140624/2009-0).

M.S. Sikora acknowledges support from FAPESP (The State of São
Paulo Research Foundation) (Grant #08/00180-0).

O.M. Bruno acknowledges support from CNPq (Grant #308449/
2010-0 and #473893/2010-0) and FAPESP (Grant # 2011/01523-1).

References

1. Backes, A.R., Casanova, D., Bruno, O.M.: Plant leaf identification
based on volumetric fractal dimension. Int. J. Pattern Recognit.
Artif. Intell. 23(6), 1145–1160 (2009)

2. Brodatz, P.: Textures: a photographic album for artists and design-
ers. Dover, New York (1966)

3. Brunella, M., Diamanti, M., Pedeferri, M., Fonzo, F.D., Casari, C.,
Bassi, A.L.: Photocatalytic behavior of different titanium dioxide
layers. Thin Solid Films 515(16), 6309–6313 (2007)

4. Bruno, O.M., de Oliveira Plotze, R., Falvo, M., de Castro, M.:
Fractal dimension applied to plant identification. Inf. Sci. 178(12),
2722–2733 (2008)

5. Cai, Q., Yang, L., Yu, Y.: Investigations on the self-organized
growth of TiO2 nanotube arrays by anodic oxidization. Thin Solid
Films 515(4), 1802–1806 (2006)

6. Fabbri, R., Costa, L.D.F., Torelli, J.C., Bruno, O.M.: 2D Euclidean
distance transform algorithms: a comparative survey. ACM Com-
put. Surv. 40(1), 1–44 (2008)

7. Falconer, K.J.: The Geometry of Fractal Sets. Cambridge Univer-
sity Press, Cambridge (1985)

8. Florindo, J.B., De Castro, M., Bruno, O.M.: Enhancing multiscale
fractal descriptors using functional data analysis. Int. J. Bifurc.
Chaos 20(11), 3443–3460 (2010)

9. Ghicov, A., Tsuchiya, H., Macak, J.M., Schmuki, P.: Titanium
oxide nanotubes prepared in phosphate electrolytes. Electrochem.
Commun. 7(5), 505–509 (2005)

10. Harte, D.: Multifractals: Theory and Applications. Chapman and
Hall/CRC Press, Boca Raton (2001)

11. Huang, P., Dai, S., Lin, P.: Texture image retrieval and image
segmentation using composite sub-band gradient vectors. J. Vis.
Commun. Image Represent. 17(5), 947–957 (2006)

12. Kaplan, L.: Extended fractal analysis for texture classification
and segmentation. IEEE Trans. Image Process. 8(11), 1572–1585
(1999)

13. Macák, J.M., Tsuchiya, H., Ghicov, A., Schmuki, P.: Dye-
sensitized anodic TiO2 nanotubes. Electrochem. Commun. 7(11),
1133–1137 (2005)

14. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman,
New York (1968)

15. Manoel, E.T.M., da Fontoura Costa, L., Streicher, J., Müller, G.B.:
Multiscale fractal characterization of three-dimensional gene ex-
pression data. In: SIBGRAPI, pp. 269–274. IEEE Comput. Soc.,
Los Alamitos (2002)

16. Provata, A., Falaras, P., Xagas, A.: Fractal features of titanium ox-
ide surfaces. Chem. Phys. Lett. 297(5–6), 484–490 (1998)

17. Russ, J.C.: Fractal Surfaces. Plenum Press, New York (1994)
18. Sikora, M.D.S., Rosario, A.V., Pereira, E.C., Paiva-Santos, C.O.:

Influence of the morphology and microstructure on the photocat-
alytic properties of titanium oxide films obtained by sparking an-
odization in H3PO4. Electrochim. Acta 56(9), 3122–3127 (2011)

19. Tsuchiya, H., Macak, J.M., Taveira, L., Balaur, E., Ghicov, A.,
Sirotna, K., Schmuki, P.: Self-organized TiO2 nanotubes prepared
in ammonium fluoride containing acetic acid electrolytes. Elec-
trochem. Commun. 7(6), 576–580 (2005)

20. Xagas, A.P., Androulaki, E., Hiskia, A., Falaras, P.: Preparation,
fractal surface morphology and photocatalytic properties of TiO2
films. Thin Solid Films 357(2), 173–178 (1999)

21. Zlamal, M., Macak, J.M., Schmuki, P., Krýsa, J.: Electrochem-
ically assisted photocatalysis on self-organized TiO2 nanotubes.
Electrochem. Commun. 9(12), 2822–2826 (2007)


	Multiscale Fractal Descriptors Applied to Nanoscale Images
	Abstract
	Introduction
	Materials and Methods
	Fractal Theory
	Fractal Dimension
	Bouligand-Minkowski

	Proposed Method
	Sample Preparation

	Results
	Conclusions
	Acknowledgements
	References


