
Improved texture image classification through the use
of a corrosion-inspired cellular automaton

Núbia Rosa da Silva b,a, Pieter Van der Weeën c, Bernard De Baets c,
Odemir Martinez Bruno a,b,n

a Scientific Computing Group, São Carlos Institute of Physics, University of São Paulo (USP), cx 369 13560-970 São Carlos, São Paulo, Brazil
b Institute of Mathematics and Computer Science, University of São Paulo (USP), Avenida Trabalhador são-carlense, 400, 13566-590 São Carlos, São Paulo, Brazil
c Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure links 653, 9000 Ghent, Belgium

a r t i c l e i n f o

Article history:
Received 26 October 2013
Received in revised form
2 July 2014
Accepted 14 August 2014
Communicated by Xiaoqin Zhang
Available online 23 August 2014

Keywords:
Pattern recognition
Pitting corrosion
Texture classification
Cellular automata

a b s t r a c t

In this paper, the problem of classifying synthetic and natural texture images is addressed. To tackle this
problem, an innovative method is proposed that combines concepts from corrosion modeling and
cellular automata to generate a texture descriptor. The core processes of metal (pitting) corrosion are
identified and applied to texture images by incorporating the basic mechanisms of corrosion in the
transition function of the cellular automaton. The surface morphology of the image is analyzed before
and during the application of the transition function of the cellular automaton. In each iteration the
cumulative mass of corroded product is obtained to construct each of the attributes of the texture
descriptor. In the final step, this texture descriptor is used for image classification by applying Linear
Discriminant Analysis. The method was tested on the well-known Brodatz and Vistex databases. In
addition, in order to verify the robustness of the method, its invariance to noise and rotation was tested.
To that end, different variants of the original two databases were obtained through addition of noise to
and rotation of the images. The results showed that the proposed texture descriptor is effective for
texture classification according to the high success rates obtained in all cases. This indicates the potential
of employing methods taking inspiration from natural phenomena in other fields.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The classification of texture images is an important problem in
pattern recognition and consequently forms the subject of many
research works in this field. Texture is an important image feature
with a strong discriminative capability and is therefore widely
used in computer vision. Image descriptors for image texture are
obtained from the analysis of groups of pixels and the way this
analysis is performed is used to classify the different methods of
texture analysis. Based on the domain from which the texture
feature is extracted, five main categories can be distinguished:
structural [1–3], statistical [4], model-based [5–7], spectral [8,9],
and agent-based methods [10–12].

This paper proposes a novel texture descriptor constructed by
means of a cellular automaton (CA) taking inspiration from the
pitting corrosion phenomenon, further on referred to as the

Corrosion-Inspired Texture Analysis (CITA) descriptor. The basic
mechanisms behind this detrimental reaction which occurs
between metals (or alloys) and their environment serve as
inspiration to develop a CA-based model. Next, this CA-based
model is employed to generate a texture descriptor for classifica-
tion by treating the image to be classified as a metal surface. The
CA-based model, like real corrosion, amplifies existing differences
in material and height (in this case grayscale value) so that the
biggest contrasts in the original texture image will become more
pronounced and smaller contrasts will be nullified. The eroded
mass of ‘metal’ by the progression of pitting corrosion at each
iteration is used to generate a texture descriptor that describes the
image to be classified. These texture descriptors are then used as
feature vectors in a supervised setting to develop a classification
method. The effectiveness of this strategy is demonstrated on two
texture databases, Brodatz and Vistex, with natural and synthetic
textures. In addition, to verify the robustness of the classification
method, its invariance to noise and rotation were tested, obtaining
satisfactory results.

The main contribution of this work thus lies in demonstrating that
a natural phenomenon can be a source of inspiration to develop a

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2014.08.036
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
URLS: http://www.scg.ifsc.usp.br (N.R. da Silva),

http://www.scg.ifsc.usp.br (O.M. Bruno).

Neurocomputing 149 (2015) 1560–1572

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.08.036
http://dx.doi.org/10.1016/j.neucom.2014.08.036
http://dx.doi.org/10.1016/j.neucom.2014.08.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.036&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.036&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.08.036&domain=pdf
http://www.scg.ifsc.usp.br
http://www.scg.ifsc.usp.br
http://dx.doi.org/10.1016/j.neucom.2014.08.036


robust texture descriptor for the classification of both natural and
synthetic texture images. Moreover, the proposed method outper-
forms the state-of-the-art methods in texture analysis, thus contribut-
ing to the image analysis field. Our paper is organized as follows.
Section 2 describes the basics behind the pitting corrosion phenom-
enon, while the definition of a CA as well as further explanation of
some parts of this definition form the subject of Section 3. The
classification method is described in Section 4 and the experimental
setup needed to test its efficacy is explained in Section 5. Section 6
presents the results and Section 7 presents the discussion of the study.
Finally, the paper is concluded in Section 8.

2. Pitting corrosion

Corrosion is the disintegration of metals (and alloys) into their
constituents due to reaction with the environment and is one of
the main causes of structural failure in industrial systems, and
poses as such an economic problem [13]. Dealing with corrosion is
difficult because of its complex nature and the involvement of
many variables. Therefore, modeling and simulation could allow
for predicting more accurately the corrosion process in time. CA-
based models are excellent candidates for modeling corrosion due
to their intrinsic simplicity and therefore, since the beginning of
the new millennium, attempts are being made to employ these
models in the field of corrosion engineering [14–18]. Corrosion is
present in a wide range of metals and environments, which points
to the universality of this phenomenon. The latter suggests that
corrosion does not depend on the details of the underlying
mechanism, so that it may be modeled adequately using simple
models [19]. Moreover, CA-based models are able to capture the
stochasticity of the involved electrochemical reactions at the
mesoscopic scale [16].

Pitting corrosion is a very harmful and common form of localized
corrosion where all or most of the metal loss occurs concentrated in
certain areas. Upon close inspection of the metal surface, pitting can
be recognized by the appearance of small holes on the metal surface
as shown in Fig. 1. The first step in pitting corrosion is the pit
initiation which is the result of impurities or irregularities of the
metal surface or the environment, making perfectly polished surfaces
more resistant to this type of corrosion. From there on, the acidity
inside the pit is maintained by the spatial separation of the cathodic
and anodic half-reactions, which creates a potential gradient and
electromigration of aggressive anions into the pit (see Fig. 1). As pit
growth progresses, different solution compositions develop inside
the cavity and the consequent voltage (IR) drop along the metal/
electrolyte interface illustrates that the deeper the pit, the lower the
pit growth rate [17,21,22].

3. Cellular automata

CAs are mathematical constructs in which the space, state and
time domains are discrete as opposed to partial differential
equations (PDE) in which these three domains are continuous
[23,24]. The ability of CAs to generate a rich spectrum of some-
times complex spatio-temporal patterns from relatively simple
underlying transition functions has led to their successful employ-
ment in the modelling of several biological processes [25–30].
Models based on CAs can be seen as an alternative to PDE-based
models, to provide researchers with a wider range of modeling
tools and, in some complex cases, a solution to problems encoun-
tered with some of the more classical modeling methods [31,32].

In this paper, we make use of a homogeneous CA, in which a
single transition function, constructed using a combination of
knowledge on the pitting corrosion phenomenon and intuition,
governs the dynamics of all cells. The following definition of a
homogeneous 2D CA is relied upon.

Definition 1 (Homogeneous 2D cellular automaton). A homoge-
neous 2D cellular automaton C can be represented as

C¼ 〈T ; S; s;N;Φ〉;

where

(i) T is a two-dimensional grid of cells c.
(ii) S is a finite set of k states, with S�N.
(iii) The output function s yields the state sðc; tÞ of every cell c at

the t-th discrete time step.
(iv) The neighborhood function N determines the neighboring

cells of every cell c, including the cell c itself.
(v) The transition function Φ yields the state sðc; tþ1Þ of every

cell c at the next time step, based on its state and that of its
neighboring cells at the current time step.

For reasons of comprehensiveness, some parts of this definition
will be elaborated in the remainder of this section.

3.1. Grid T

In this paper, a finite two-dimensional grid consisting of
squares is used, because it has the most straightforward imple-
mentation and provides an easy way of linking the cells of T to the
pixels of the texture images to be classified (cfr. infra). Further-
more, an indexing of the cells of a 2D CA is introduced, which is
shown in Fig. 2. For a square grid, it holds that in ¼ jn ¼ ffiffiffiffiffiffiffijT jp

.

3.2. Neighborhood function N

Many different neighborhoods can be defined in 2D, the two
most important ones being the Moore and the von Neumann
neighborhood. The Moore neighborhood of a cell ci;j comprises
those cells that share at least a vertex with ci;j (see Fig. 3(a)). The
von Neumann neighborhood is a more restricted neighborhood in
which only those cells that share an edge with ci;j are considered
as neighbors (see Fig. 3(b)).

3.3. Discrete states

Every cell ci;j has one of the k discrete states comprised in the
set S. The states of the cells ci;j of T at t¼0, i.e. sðci;j;0Þ, constitute
the initial condition of T . In this paper, the initial condition of T is
determined by the grayscale value of the different pixels of the
corresponding texture image (cfr. infra).Fig. 1. Pitting corrosion: schematic representation in a metal surface.
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3.4. Transition function Φ

The transition function Φ determines the state of a cell ci;j at
the (tþ1)-th time step based on the cell's current state and the
states of its neighboring cells. The transition function employed in
this paper is executed in a deterministic and synchronous manner,
meaning that Φ is used to evaluate the state of every cell of T at
every time step and for all cells at the same time [33].

4. Corrosion-inspired texture analysis

To obtain the texture descriptor proposed in this paper, initially,
the texture image is converted into the initial state of a CA.
Thereafter, a CA-based model inspired by the pitting corrosion
phenomenon is evaluated for a number of time steps. The
cumulative mass of corroded metal after each iteration of the
CA-based model is used to construct a texture descriptor for every
texture image. Finally, these texture descriptors are used to classify
the images via Linear Discriminant Analysis (LDA). In the remain-
der of this section, the procedure to obtain the texture descriptor
is explained in more detail.

A two-dimensional grayscale image is treated as a discrete
object and is seen as a grid T . The dimensions of T are defined by
the size of the image, where each pixel of the image is a cell of the
CA. The original image is then used to determine an initial state of
the cells of the CA by converting the gray level image into a
discrete initial state for each cell. Thus, for the initial configuration
sðci;j;0Þ there are 256 possible states, ranging from 0 to 255. This

conversion is described by

sðci;j;0Þ ¼ Iði; jÞ; ð1Þ
where I is the original image and Iði; jÞ represents the gray level of
the pixel at the i-th row and j-th column of the image I. In order to
introduce the ideas of pitting corrosion, the 2D grid will be
regarded as a metal surface and the state of each cell will
represent the depth of the local pit in the metal (i.e. along the
third dimension), with state 0 meaning that there is no pit and 255
being the largest pit depth of the metal at t¼0. It is important to
point out that for t40 the maximum pit depth can exceed 255
and from thereon it is possible that the grid can no longer be
represented as a grayscale image.

An important consideration is the choice of boundary condi-
tions in order to obtain an appropriate behavior of the CA-based
model. The two most popular boundary conditions are the
periodic and reflecting boundary conditions. The former tries to
simulate an infinite grid, where the new boundaries of the top,
bottom, left and right are filled with the values of the opposite
side, thus forming a torus in a 3D space. This boundary condition is
useful for simulating systems where the physical boundaries do
not play an important role. However, throughout this paper,
reflecting boundaries will be used as they give rise to better
results for the studied databases as was observed from preliminary
tests. Firstly, an imaginary row at the top and at the bottom of the
grid and an imaginary column at the left and at the right of the
grid are added. Then, the reflecting boundary conditions are
applied at every time step as follows:

sðc1;j; tÞ ¼ sðc2;j; tÞ;
sðcnþ2;j; tÞ ¼ sðcnþ1;j; tÞ;
sðci;1; tÞ ¼ sðci;2; tÞ;
sðci;nþ2; tÞ ¼ sðci;nþ1; tÞ; ð2Þ
with n the size of the original image with n� n pixels.

The updated state of each cell ci;j of T at time tþ1 depends on
the analysis of the states of the cells in the neighborhood of ci;j at
time t. In this paper, the Moore neighborhood (see Fig. 3(a)) is
employed. Furthermore, the CA-based model makes use of a
transition function Φ taking inspiration from pitting corrosion.
In a first step, di;j is calculated for every cell ci;j as the difference
between the state of this cell and the lowest state value within its
Moore neighborhood (see the following equation):

di;j ¼ sðci;j; tÞ�minð~sðNðci;jÞ; tÞÞ; ð3Þ
where ~sðNðci;jÞ; tÞ is the set of states of the cells in the Moore
neighborhood of ci;j.

Bearing in mind the principles of pitting corrosion, a local
‘impurity’ or minimum height difference is needed at a certain
location in order to initiate or propagate pitting corrosion. For this
purpose, a surface roughness parameter ν is introduced. All
differences lower than this parameter ν are considered insignif-
icant, i.e. not real impurities, in order to account for the fact that
not even a polished metal surface is perfectly smooth. This means
that differences di;j lower than ν will not give rise to (further)
pitting. On the other hand, the larger the difference grows, the
lower the pit growth rate will be due to the IR drop, until finally
the pit growth rate becomes zero. In this paper, it is assumed that
if the difference di;j is greater than 255, the greatest possible
difference at t¼0, the corresponding pit growth rate is zero. This
means that only the state of those cells with a difference di;j
greater than or equal to ν and smaller than or equal to 255 are
evaluated.

Fig. 4(a)–(c) illustrates the selection process to determine
whether a cell will be evaluated or not. In this example, ν is set
to five meaning that cells ci;j whose state differs less than five with
the lowest state in its neighborhood are considered to belong to

Fig. 2. Ordering of the cells of a 2D CA.

Fig. 3. Neighborhoods of a cell ci;j in a square tessellation: (a) Moore neighborhood
and (b) von Neumann neighborhood.
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the surface and will not have their state changed. Fig. 4(a) shows
the cells belonging to a 5�5 square tessellation with their initial
state. Fig. 4(b) depicts the difference di;j for each of these cells
calculated according to Eq. (3). Finally, in Fig. 4(c) the gray cells
indicate the cells that are evaluated in that time step, because their
di;j is greater than or equal to five and smaller than or equal to 255.

Under these assumptions, the transition function Φ establishes
the state of a cell ci;j at the (tþ1)-th time step according to

sðci;j; tþ1Þ ¼
sðci;j; tÞþQ ðdi;j; γÞ if 255Zdi;jZν;
sðci;j; tÞ if di;joν or di;j4255;

(
ð4Þ

where γA ½0;1� is the pitting power. This parameter γ represents
the metal-specific resistance to corrosion under given environ-
mental conditions, where γ ¼ 0 stands for completely resistant
metal. Further, Q is a function that employs di;j and γ to determine
the level of corrosion to be applied. In this paper, Q is defined as

Q ðdi;j; γÞ ¼ ð255�di;jÞγ: ð5Þ
From Eq. (5), it can be seen that the function Q gives, depending

on the value of γ, a non-integer output, meaning that the
employed model structure is actually a continuous CA or Coupled
Map Lattice rather than a CA [34]. However, in order to keep
working with a CA-based model and to not overcomplicate the
model, the choice was made to limit the output of Q to integer
values (see the following equation):

Q ðdi;j; γÞ ¼ ⌊ð255�di;jÞγc; ð6Þ
where a in ⌊ac denotes the floor of a.

The output of the CA-based model at every time step is the
cumulative mass of corroded product. In each iteration, after
updating the state of the cells, the mass that suffered corrosion
in that iteration is added to the eroded total mass from the
previous iteration. Finally, this cumulative corroded mass is
expressed relative to the number of pixels of the texture images
such that texture images with different sizes can be compared. The
time series of cumulative mass of corroded metal thus obtained
will be used as texture descriptor for each image. The first column
in Fig. 5 shows examples of some initial images, while the second
and third columns show the simulated results after 90 iterations of
the CA-based model, in grayscale and in a color map, respectively.
Upon completion of the simulation, some structural details from
the original image can still be retrieved in the simulated output.
Regions with similar state values are mostly considered by the
model as belonging to the same local surface and therefore tend to
keep the same state value throughout the simulation.

The classification of the texture descriptors generated by the
CA-based model is performed using LDA following a stratified
10-fold cross-validation scheme. The number of features is pre-
cisely the number of iterations of the CA-based model. LDA is

traditionally used in texture analysis to find a linear combination
of attributes resulting in a good separation of the classes. Although
more sophisticated machine learning methods for classification
exist, the intrinsic value of new features is best judged by means of
a simple technique such as LDA. The procedure to obtain the
proposed texture descriptor is summarized in Fig. 6. Fig. 7 shows
the feature vectors for four texture images from the Brodatz
database. It can be clearly seen from this figure that the feature
vectors from textures belonging to the same class are very similar
on one hand and that these vectors are different from the feature
vectors from images belonging to different classes on the
other hand.

5. Experimental setup

To investigate the performance of the classification method, it
is employed for the classification of the images of two classical
texture databases, the Brodatz and Vistex databases, and the
results are compared to those obtained with several established
features from the literature. The remainder of this section includes
a short description of the employed databases and the features
from the literature used for comparison as well as an optimization
of the parameters of the procedure to obtain the CITA descriptor,
i.e. γ, ν and the number of iterations performed in order to obtain
the most favorable results. To ensure that the CITA descriptor is
not sensitive to the parameter configuration, Usptex, a different
database than the databases used for the validation of the method
is used to perform the parameter optimization.

5.1. Databases

Two important databases, widely used in the literature and
each with its own peculiarities, are employed for testing the
different methods for pattern classification: the Brodatz and Vistex
databases and a third database, Usptex, is used to perform the
parameter optimization.

5.1.1. Brodatz database
The Brodatz database [35] contains 111 unique natural textures

(and therefore also 111 classes) with image size of 640�640 pixels
and 256 gray levels. From each image ten subimages with size of
200�200 pixels were obtained, resulting in an image database
containing 1110 images. Fig. 8 shows the complete Brodatz
database and Fig. 9(a) and (b) shows two original Brodatz images
and ten subimages obtained from these original images without
overlapping, respectively.

21 21 28 28 28

21 27 22 21 21

31 34 22 21 21

22 27 22 21 21

21 20 27 21 21

0 0 7 7 7

0 6 1 0 0

10 13 1 0 0

2 7 2 0 0

1 0 7 0 0

Fig. 4. Selection of cells to be updated, with ν¼ 5: (a) 5�5 square grid with initial states of the cells, (b) difference di;j for all cells according to Eq. (3) and (c) gray cells
indicate cells to be updated.
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5.1.2. Vistex database
The Vistex database [36] contains 864 images belonging to 54

texture classes. Each texture class contains 16 texture samples of
128�128 pixels, each extracted from a particular texture pattern

without overlapping (see Fig. 10). The true color RGB images are
converted to grayscale intensity images, because the CITA descrip-
tor in its present form is constructed making use of grayscale
images.

Fig. 5. Simulation results. First column: original images. Second column: result in grayscale after application of the CA-based model. Third column: result in blue-red scale
after application of the CA-based model (see color code at the right hand side). The experiments were performed with γ¼0.05, ν¼5 and 90 iterations. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this article.)
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5.1.3. Usptex database
The Usptex database [37] contains 191 color images that each

form a texture class (see Fig. 11). Each image has a size of
512�384 pixels from which 12 subimages with a size of
128�128 pixels are extracted without overlapping, so that a total
of 2292 images is obtained. The images are again converted to
grayscale images.

5.2. Established features for texture analysis

5.2.1. Fourier descriptors
Fourier descriptors [38,39] consider attributes in terms of

spectral density considering the texture as a Gaussian random
field. The Fourier transform was calculated for each image, where
the spectrum was divided into 64 sectors with eight radial
distances and eight angles. The sum of the absolute spectrum

values for each sector is calculated, resulting in 64 descriptors
per image.

5.2.2. Gray level co-occurrence matrix
The gray level co-occurrence matrix (GLCM) [4] is based on the

spatial gray level dependence matrices. Haralick descriptors (con-
trast, correlation, energy and homogeneity) were computed from
resulting co-occurrence matrices with angles of 01, 451, 901 and
1351, distances equal to one or two pixels and 64 gray levels in
order to obtain a set of 32 descriptors for each image.

5.2.3. Gray level difference matrix
The gray level difference matrix (GLDM) [40,41] represents the

absolute gray level difference between every two pixels with
distance h. Here, 60 descriptors were obtained using h¼1, 3 and

Fig. 6. Pseudocode generating the CITA descriptor.
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5 and the attributes contrast, angular second moment, entropy,
mean, and inverse difference moment from the estimated prob-
ability density function.

5.2.4. Gabor filter
A Gabor filter [42–44] is a bi-dimensional Gaussian function

modulated with an oriented sinusoid in a determined frequency
and direction. To perform the tests, 64 filters were used, composed
of eight rotation filters and eight scale filters with lowest
frequency equal to 0.01 and highest frequency equal to 0.4.

5.2.5. Local binary pattern variance
Local binary pattern variance (LBPV) [45] is a variation of

traditional LBP [46] and is calculated from the binary value of
each pixel in the radius 1 neighborhood surrounding the central
pixel, measuring the local variance.

5.3. Parameter evaluation

In order to retrieve the parameters used in the procedure to
obtain the CITA descriptor, the Usptex database, a different
database than the ones used for validation is employed. This is
done to ensure that the CITA descriptor is not susceptible to the
parameters and therefore the same configuration can be used for
classification of textures from different databases. The experi-
ments in the remainder of this paper were performed using
a stratified 10-fold cross-validation scheme [47] and LDA as

classifier, both for the CITA descriptor as well as for the established
features from literature.

5.3.1. Number of iterations
To describe each image, the cumulative mass of corroded metal

after each iteration of the CA-based corrosion model is used. These
values constitute the feature vector that is used to discriminate each
of the images. However, finding a single number of iterations that
gives rise to the smallest, most informative feature vector for all
images of both databases is a non-trivial task due to the variety of
the type of texture images and also because this number is
dependent on the values of γ and ν. In order not to overcomplicate
the problem, the choice is made to look for a single optimal number
of iterations for the Usptex database that overall gives the best
result for all the texture images. This optimal number of iterations is
nevertheless still kept dependent on γ and ν.

5.3.2. Surface roughness ν
One of the parameters that defines the pitting corrosion is the

surface roughness ν. According to the proposed corrosion-based
method, pixels having a difference d lower than ν (Eqs. (3) and (4))
do not suffer from the action of the corrosion process, considering
that they are part of the local surface. However, if the neighbor-
hood has a difference d greater than the permitted threshold
surface, the center pixel will pass through a corrosion process
having its value eroded according to Eqs. (4) and (5). Fig. 12(a)
shows the success rate surface, i.e. the percentage of correctly
classified texture images, for the Usptex database for ν varying
from 0 to 10 and γ varying from 0.01 to 0.08. The figure shows that
higher values of ν lead to a lower success rate. However, when ν
equals 0 the obtained success rate is smaller than for ν equal to
1 for almost all values of γ. Thus, a value of 1 for ν is chosen as
optimal value.

5.3.3. Pitting power γ
Another model parameter with a physical meaning is the

pitting power γ. This parameter is important because it determines
the level of corrosion according to the material being eroded.
However, as we are not dealing with real metal surfaces, this
parameter is not known for the image texture analysis. Fig. 12(a) is
now studied for γ ranging from 0.01 to 0.08. It can be seen that the
highest success rate is obtained with γ and ν equal to 0.05 and 1,
respectively. For values of γ below 0.05 the rate tends to be
reduced while for values above 0.05 the rate also tends to
decrease. When looking at combined high values of γ and ν the
success rates drop sharply. Fig. 12(b) shows the number of
iterations to obtain the highest success rate for each of the
parameter combinations. The graph shows that the optimal
number of iterations necessary for γ equal to 0.05 and ν equal to
1 is relatively low in comparison to the other results.

6. Results

This section reports on the performance of the proposed
classification method. The classification performance when using
the CITA descriptor is compared to that when using the traditional
texture features in the literature. Three sets of experiments were
performed: firstly on the original test databases and subsequently
on modified versions of the test databases to test noise and
rotation invariance. All tests were performed using the optimized
values for ν, γ and the number of iterations identified in the
previous section is shown in Table 1. For all experiments the
success rate and the standard deviation (std) based on ten
repetitions are shown for comparison of the results.

Fig. 8. The Brodatz database. The size of the images is 640�640 pixels.
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Fig. 7. Texture descriptor of four different texture images of the Brodatz database,
with γ¼0.04, ν¼5 and 100 iterations. The blue and red vectors originate from class
11 images, the purple vector from a class 24 image and the green vector from a
class 78 image. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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6.1. Unmodified databases

Table 2 lists the results obtained for the unmodified databases.
As can be seen, an excellent success rate can be achieved by using
the CITA descriptor, which is higher than the success rate for all
other features for the Brodatz database and is of the same quality
as the success rate obtained with GLDM for the Vistex database. To
further test the robustness of the classification method based on
the CITA descriptor, firstly, noise is applied to the images and,
secondly, a rotation of the images is performed to verify whether
the performance persists under these circumstances.

6.2. Noise invariance

In order to demonstrate the tolerance of the proposed classi-
fication method to noise, experiments were performed on mod-
ified versions of the Brodatz and Vistex databases with addition of
noise in the form of ‘Salt and Pepper’ noise. By applying this type
of noise to an image, black and white pixels are randomly added to
the image matrix with an intensity l which may vary from 0 to

1 and represents the share of the image affected by the noise. The
robustness of the classification method to the addition of noise is
demonstrated by performing the texture classification on six
modified databases generated from both the Brodatz and Vistex
databases. The six different databases were generated in both
cases by adding ‘Salt and Pepper’ noise with intensities l¼0.01,

Fig. 11. The Usptex database. The size of the images is 512�384 pixels.

Fig. 9. (a) Two Brodatz textures of size 640�640 pixels and (b) ten subimages of size 200�200 pixels.

Fig. 10. The Vistex database. The size of the images is 128�128 pixels.

N.R. da Silva et al. / Neurocomputing 149 (2015) 1560–1572 1567



0.05, 0.07, 0.1, 0.5 and 0.7. For all different cases the CITA descriptor
is compared with the established features described in Section 5 in
order to get an idea of how the CITA descriptor, in comparison
with the other features, deals with deformation of texture. Fig. 13
shows samples of the modified Vistex databases where noise was
added to the images and where each column shows examples of
an intensity l of noise.

The success rates for classifying the perturbed images from the
modified Brodatz and Vistex databases using the different features
are given in Tables 3 and 4, respectively. These results were
obtained with an addition of noise to both the training as well
as the test data. Further, experiments using non-perturbated
texture images for training and images with addition of noise for
testing were performed. The results of the latter tests are shown in
Tables 5 and 6.

6.3. Rotation invariance

The proposed CITA descriptor is intrinsically rotation invariant,
and therefore good results are expected when tests are performed

with modified databases with rotated images. To demonstrate the
rotation invariance, additional versions of both the Brodatz and
Vistex databases are created. Each image from the databases is
rotated with the following angles: 01, 451, 901, 1351, 1801, 2251 and
2701 and in this way, seven images are obtained from each original
database image. Therefore, the new database with rotated Brodatz
images has 70 images per class with 111 classes in total and the
new database with rotated Vistex images has 112 images per class
with 54 classes in total. Fig. 14 shows, for some texture images
from the Brodatz database, the seven rotated images obtained
under the different rotation angles, with all images on the same
row originating from the same original image.

Table 7 shows the success rates for the classification of the
texture images of the Brodatz and Vistex databases with rotated
images. In this case, the success rates are obtained for the
complete rotated Brodatz and Vistex databases, where each
database consists of all rotated texture images of all the original
images. The success rates achieved with the CITA descriptor are
better than the success rates obtained with any of the other
features and are comparable to the results obtained on the
unmodified databases. These experimental results indicate that
our descriptor has a good generalization ability. Hence, the
descriptor described here has proven to be performant also for
rotated texture classification.

7. Discussion

Our findings suggest that a CA-based model, taking inspiration
from the natural phenomenon of pitting corrosion, results in
informative features for subsequent texture classification. Experi-
ments using the original Brodatz and Vistex databases have shown
the capability of the CITA descriptor to discriminate between
different textural classes. However, for the Vistex database, GLDM
achieves the same success rate. The latter can be explained by the
fact that, just like the CITA descriptor, GLDM uses differences in
grayscale value between neighboring pixels to generate features.
Nevertheless, the CITA descriptor has some distinctive character-
istics. Firstly, it takes into account a larger neighborhood than
GLDM and secondly, the CITA descriptor acquires additional
information about the texture structure through its iterative
nature. These characteristics can result in better texture classifica-
tion, as shown for the original Brodatz database and for rotated
textures, where the texture classification with the CITA descriptor

Fig. 12. (a) Pitting power and surface roughness analysis for the Usptex database with γ from 0.01 to 0.08 and ν from 0 to 10. (b) Number of iterations for each parameter
configuration in (a).

Table 1
Optimal parameter values.

Parameter Value

Number of iterations 158
ν 1
γ 0.05

Table 2
Comparison in terms of the success rate of texture classification making use of the
CITA descriptor with classification making use of traditional texture analysis
features for the unmodified databases.

Feature Success rate (7std)

Brodatz Vistex

Fourier 94 (72.4) 94 (71.9)
GLCM 94 (73.3) 94 (73.5)
GLDM 98 (70.9) 97 (71.6)
Gabor filter 92 (73.7) 92 (71.7)
LBPV 88 (73.3) 82 (73.9)
CITA descriptor 99 (71.5) 97 (71.7)
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gives rise to a success rate that is 14% higher than the classification
with GLDM for both the Brodatz and the Vistex databases.

Experiments to validate the noise invariance were performed
by creating six new databases by adding ‘Salt and Pepper’ noise

with different intensities to every image. The results demonstrate
the good performance of our descriptor even with the addition of
various intensities of noise. For all databases generated from
Brodatz database, the classification with the CITA descriptor

Fig. 13. Samples of six databases generated from the Vistex database by adding ‘Salt and Pepper’ noise. Each column represents an intensity of noise with l¼0.01, 0.05, 0.07,
0.1, 0.5 and 0.7 from left to the right.

Table 3
Success rates of texture classification for six databases obtained through addition of different intensities l of ‘Salt and Pepper’ noise to the Brodatz database.

Feature Success rate (7std)

l¼0.01 l¼0.05 l¼0.07 l¼0.1 l¼0.5 l¼0.7

Fourier 93 (72.6) 93 (73.3) 91 (73.5) 90 (73.5) 82 (74.9) 67 (76.1)
GLCM 94 (73.4) 94 (72.7) 95 (72.7) 94 (73.0) 87 (74.8) 76 (76.3)
GLDM 98 (71.5) 98 (71.5) 98 (71.5) 98 (71.8) 95 (72.1) 91 (73.5)
Gabor filter 91 (73.7) 90 (74.6) 90 (74.7) 90 (75.1) 82 (75.8) 67 (73.8)
LBPV 88 (73.1) 87 (73.8) 87 (74.5) 87 (74.8) 66 (75.2) 46 (76.4)
CITA descriptor 99 (71.6) 98 (71.3) 98 (71.4) 98 (71.2) 97 (72.3) 97 (71.7)

Table 4
Success rates of texture classification for six databases obtained through addition of different intensities l of ‘Salt and Pepper’ noise to the Vistex database.

Feature Success rate (7std)

l¼0.01 l¼0.05 l¼0.07 l¼0.1 l¼0.5 l¼0.7

Fourier 93 (72.4) 91 (72.4) 89 (71.6) 89 (72.1) 67 (73.3) 35 (75.9)
GLCM 94 (72.9) 95 (71.6) 95 (72.8) 94 (71.8) 84 (73.8) 66 (74.3)
GLDM 98 (71.1) 97 (71.5) 97 (71.8) 97 (71.3) 94 (71.4) 86 (73.1)
Gabor filter 91 (72.2) 89 (71.7) 89 (73.2) 86 (73.2) 56 (75.9) 34 (73.9)
LBPV 83 (73.9) 83 (72.5) 82 (73.9) 81 (73.8) 54 (73.1) 39 (77.8)
CITA descriptor 96 (72.4) 94 (71.6) 94 (71.3) 94 (71.5) 94 (74.7) 81 (74.5)
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results in a higher success rate compared to traditional features in
literature. It is important to note that even with increasing noise
levels, the classification with the CITA descriptor yields high
success rates, while for classification with all other features the
success rate declines. For the databases generated from Vistex
database, texture classification making use of our descriptor gives
rise to the second best success rate, preceded by classification with
GLDM, but still demonstrating its robustness to noise.

The best results are not achieved making use of the CITA
descriptor compared to the other features considered in this paper
when the images with addition of noise are only used as test data,
while employing the original texture images as training data.
However, the success rates obtained for classification with the
CITA descriptor are comparable to those obtained for classification
with the other features for both the Brodatz and Vistex databases.
The use of the proposed CITA descriptor for classification does not

Table 5
Success rates of classification of the texture images of the Brodatz database, with training data without addition of noise and test data with addition of different intensities l
of ‘Salt and Pepper’ noise.

Feature Success rate (7std)

l¼0.01 l¼0.05 l¼0.07 l¼0.1 l¼0.5 l¼0.7

Fourier 90 (72.6) 62 (73.5) 50 (74.0) 36 (72.6) 4 (70.9) 1 (71.2)
GLCM 49 (72.1) 6 (70.9) 4 (70.5) 3 (70.7) 1 (70.0) 1 (70.0)
GLDM 84 (75.2) 42 (73.0) 16 (71.6) 9 (70.6) 1 (70.0) 1 (70.0)
Gabor filter 73 (74.9) 57 (71.9) 32 (71.5) 26 (72.2) 7 (71.1) 4 (70.8)
LBPV 57 (73.3) 14 (71.3) 10 (71.4) 9 (70.7) 1 (70.0) 1 (70.0)
CITA descriptor 97 (72.8) 37 (73.4) 20 (71.7) 11 (71.4) 6 (71.9) 4 (70.8)

Table 6
Success rates of classification of the texture images of the Vistex database, with training data without addition of noise and test data with addition of different intensities l of
‘Salt and Pepper’ noise.

Feature Success rate (7std)

l¼0.01 l¼0.05 l¼0.07 l¼0.1 l¼0.5 l¼0.7

Fourier 58 (74.3) 10 (72.1) 8 (72.1) 6 (72.1) 3 (71.1) 2.1 (71.1)
GLCM 64 (73.6) 33 (71.4) 5 (70.6) 2 (70.6) 2 (70.6) 2 (70.6)
GLDM 90 (72.6) 13 (71.4) 13 (71.1) 9 (71.3) 2 (70.6) 2.3 (71.1)
Gabor filter 58 (72.8) 14 (73.4) 10 (72.2) 5. (71.6) 2 (70.6) 2 (70.6)
LBPV 52 (72.7) 14 (72.7) 7 (71.6) 5.6 (71.6) 2 (70.6) 2 (70.6)
CITA descriptor 83 (73.4) 23 (74.3) 17 (72.6) 11 (71.7) 6 (73.3) 5 (72.9)

Fig. 14. Samples of rotated images from the Brodatz database. Each column corresponds to a different rotation angle. From left to right: 01, 451, 901, 1351, 1801, 2251 and 2701.
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always result in the highest success rates for the different noise
intensities and the two databases, nor is it the worst feature in any
of the studied cases.

8. Conclusions

In this paper, a new descriptor for texture analysis was
proposed by combining concepts from corrosion engineering,
cellular automata and pattern recognition. The developed CITA
descriptor in combination with LDA was used to classify the
texture images of two well-known databases: Brodatz and Vistex.
The descriptor was derived from images of the original databases
and the robustness of the classification method under addition of
noise and rotation was investigated. For this purpose, several new
databases were created, starting from the original databases. Six
new databases were obtained by adding ‘Salt and Pepper’ noise
with different intensities to each of the images of the test
databases and another new database was obtained by rotating
the images of the databases under seven angles. In all cases, the
texture classification making use of the CITA descriptor obtained
good results compared to the classification making use of features
from the literature, showing a good generalization ability and
proving to be performant for texture classification.

The results presented in this paper demonstrate the potential
of the CITA descriptor. Therefore, future work should focus on
further refining the feature generation procedure as well as
expanding it so that it is applicable for more types of texture
images. This can be done by integrating measures of corrosion
frequency via a histogram of eroded pixels and measuring the
velocity of corrosion by calculating the difference between initial
and final values divided by the number of iterations. Further, the
procedure to generate the CITA descriptor has to be expanded so
that it can deal with RGB color images as well as with dynamic
textures, i.e. sequences of images that together form a texture.
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